skip to main content
10.1145/1837101.1837109acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Spectral mesh processing

Published:26 July 2010Publication History

ABSTRACT

Spectral mesh processing is an idea that was proposed at the beginning of the 90's, to port the "signal processing toolbox" to the setting of 3D mesh models. Recent advances in both computer horsepower and numerical software make it possible to fully implement this vision. In the more classical context of sound and image processing, Fourier analysis was a corner stone in the development of a wide spectrum of techniques, such as filtering, compression, and recognition. In this course, attendees will learn how to transfer the underlying concepts to the setting of a mesh model, how to implement the "spectral mesh processing" toolbox and use it for real applications, including filtering, shape matching, remeshing, segmentation, and parameterization.

Skip Supplemental Material Section

Supplemental Material

cs014_1-10.mp4

mp4

195.1 MB

References

  1. {AFW06} D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 2006.Google ScholarGoogle Scholar
  2. {Arv95} James Arvo. The Role of Functional Analysis in Global Illumination. In P. M. Hanrahan and W. Purgathofer, editors, Rendering Techniques '95 (Proceedings of the Sixth Eurographics Workshop on Rendering), pages 115--126, New York, NY, 1995. Springer-Verlag.Google ScholarGoogle Scholar
  3. {BN03} M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. Neural Computations, 15(6):1373--1396, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {Bra99} Ronald N. Bracewell. The Fourier Transform And Its Applications. McGraw-Hill, 1999.Google ScholarGoogle Scholar
  5. {Cip93} Barri Cipra. You can't always hear the shape of a drum. What's Happening in the Mathematical Sciences, 1, 1993.Google ScholarGoogle Scholar
  6. {DBG+05} S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Quadrangulating a mesh using laplacian eigenvectors. Technical report, June 2005.Google ScholarGoogle Scholar
  7. {DBG+06a} S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart. Spectral mesh quadrangulation. ACM Transactions on Graphics (SIGGRAPH 2006 special issue), 2006.Google ScholarGoogle Scholar
  8. {DBG+06b} Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C. Hart. Spectral surface quadrangulation. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 1057--1066, New York, NY, USA, 2006. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {dGGV08} Fernando de Goes, Siome Goldenstein, and Luiz Velho. A hierarchical segmentation of articulated bodies. Computer Graphics Forum (Symposium on Geometry Processing), 27(5):1349--1356, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {DKT05} Mathieu Desbrun, Eva Kanzo, and Yiying Tong. Discrete differential forms for computational modeling. Siggraph '05 course notes on Discrete Differential Geometry, Chapter 7, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {DMA02} Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic parameterizations of surface meshes. In Proceedings of Eurographics, pages 209--218, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. {dV90} Y. Colin de Verdiere. Sur un nouvel invariant des graphes et un critere de planarite. J. of Combinatorial Theory, 50, 1990.Google ScholarGoogle Scholar
  13. {Dye06} Ramsey Dyer. Mass weights and the cot operator (personal communication). Technical report, Simon Fraser University, CA, 2006.Google ScholarGoogle Scholar
  14. {EK03} A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell., 25(10):1285--1295, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {Fei96} J. Feidman. Computing betti numbers via combinatorial laplacians. In Proc. 28th Sympos. Theory Comput., pages 386--391. ACM, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {FH04} M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. Springer, 2004.Google ScholarGoogle Scholar
  17. {Fie73} Miroslav Fiedler. Algebraic connectivity of graphs. Czech. Math. Journal, 23:298--305, 1973.Google ScholarGoogle Scholar
  18. {Fie75} Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. Journal, 25:619--633, 1975.Google ScholarGoogle Scholar
  19. {GBAL} Katarzyna Gebal, Andreas Baerentzen, Henrik Aanaes, and Rasmus Larsen. Shape analysis using the auto diffusion function. Computer Graphics Forum (Proc. of Symp. on Geom. Proc.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {GGS03a} C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes. ACM Trans. Graph., 22(3):358--363, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {GGS03b} C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization for 3d meshes, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {Got03} Craig Gotsman. On graph partitioning, spectral analysis, and digital mesh processing. In Shape Modeling International, pages 165--174, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {GY02} X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communications in Information and Systems, 2(2):121--146, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  24. {Hir03} Anil Hirani. Discrete exterior calculus. PhD thesis, 2003.Google ScholarGoogle Scholar
  25. {HPW06} Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. On the convergence of metric and geometric properties of polyhedral surfaces. Geom Dedicata, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. {HS97} D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63:29--78, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  27. {HWAG09} Qixing Huang, Martin Wicke, Bart Adams, and Leonidas J. Guibas. Shape decomposition using modal analysis. 28(2):to appear, 2009.Google ScholarGoogle Scholar
  28. {HZM+08} Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun Bao. Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics (SIGGRAPH Asia conf. proc., 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. {IL05} Martin Isenburg and Peter Lindstrom. Streaming meshes. In IEEE Visualization, page 30, 2005.Google ScholarGoogle Scholar
  30. {Jai89} A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {JNT} Dmitry Jakobson, Nikolai Nadirashvili, and John Toth. Geometric properties of eigenfunctions.Google ScholarGoogle Scholar
  32. {JZ07} Varun Jain and Hao Zhang. A spectral approach to shape-based retrieval of articulated 3D models. Computer Aided Design, 39:398--407, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. {JZvK07} Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling, 2007. to appear.Google ScholarGoogle ScholarCross RefCross Ref
  34. {Kac66} Mark Kac. Can you hear the shape of a drum? Amer. Math. Monthly, 73, 1966.Google ScholarGoogle Scholar
  35. {KG00a} Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proc. of ACM SIGGRAPH, pages 279--286, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. {KG00b} Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In SIGGRAPH, pages 279--286, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. {KG00c} Zachi Karni and Craig Gotsman. Spectral compression of mesh geometry. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 279--286, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. {KLS03} A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations with low distortion. ACM TOG (SIGGRAPH), 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. {Kor02} Y. Koren. On spectral graph drawing, 2002.Google ScholarGoogle Scholar
  40. {Kor03} Y. Koren. On spectral graph drawing. In Proc. of the International Computing and Combinatorics Conference, pages 496--508, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. {KSO04} Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O'Brien. Spectral surface reconstruction from noisy point clouds. In Proc. of Eurographics Symposium on Geometry Processing, pages 11--21, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. {KVV00} R. Kannan, S. Vempala, and A. Vetta. On clustering - good, bad, and spectral. In FOCS, pages 367--377, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. {Lev06} Bruno Levy. Laplace-beltrami eigenfunctions: Towards an algorithm that understands geometry. In IEEE International Conference on Shape Modeling and Applications, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. {LH05} Marius Leordeanu and Martial Hebert. A spectral technique for correspondence problems using pairwise constraints. In International Conference of Computer Vision (ICCV), volume 2, pages 1482--1489, October 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. {LPM02} Bruno Levy, Sylvain Petitjean, and Nicolas Ray Nicolas Jerome Maillot. Least squares conformal maps for automatic texture atlas generation. In ACM, editor, SIGGRAPH conf. proc., 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. {LPRM02} B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas generation. In Proc. of ACM SIGGRAPH 02, pages 362--371, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. {LZ04} R. Liu and H. Zhang. Segmentation of 3D meshes through spectral clustering. In Pacific Graphics, pages 298--305, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. {LZ07} Rong Liu and Hao Zhang. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics 2007), 26:385--394, 2007.Google ScholarGoogle Scholar
  49. {MCBH07} Diana Mateus, Fabio Cuzzolin, Edmond Boyer, and Radu Horaud. Articulated shape matching by robust alignment of embedded representations. In ICCV '07 Workshop on 3D Representation for Recognition (3dRR-07), 2007.Google ScholarGoogle ScholarCross RefCross Ref
  50. {MDSB03} Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-geometry operators for triangulated 2-manifolds. In Hans-Christian Hege and Konrad Polthier, editors, Visualization and Mathematics III, pages 35--57. Springer-Verlag, Heidelberg, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  51. {MIT06} Omer Meshar, Dror Irony, and Sivan Toledo. An out-of-core sparse symmetric indefinite factorization method. ACM Transactions on Mathematical Software, 32:445--471, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. {MTAD08} Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. Spectral conformal parameterization. In ACM/EG Symposium of Geometry Processing, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. {NJW02} A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. In Neural Information Processing Systems, volume 14, pages 849--856, 2002.Google ScholarGoogle Scholar
  54. {OMT02} R. Ohbuchi, A. Mukaiyama, and S. Takahashi. A frequency-domain approach to watermarking 3D shapes. Computer Graphics Forum, 21(3):373--382, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  55. {OSG08} Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. Global intrinsic symmetries of shapes. Computer Graphics Forum (Symposium on Geometry Processing), 27(5):1341--1348, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. {OTMM01} R. Ohbuchi, S. Takahashi, T. Miyazawa, and A. Mukaiyama. Watermarking 3D polygonal meshes in the mesh spectral domain. In Proc. of Graphics Interface, pages 9--18, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. {PP93} Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1), 1993.Google ScholarGoogle Scholar
  58. {Pra99} G. Prathap. Towards a science of fea: Patterns, predictability and proof through some case studies. Current Science, 77:1311--1318, 1999.Google ScholarGoogle Scholar
  59. {RS00a} S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323--2326, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  60. {RS00b} Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323--2326, Dec 2000.Google ScholarGoogle ScholarCross RefCross Ref
  61. {Rus07} R. M. Rustamov. Laplace-beltrami eigenfunctions for deformation invariant shape representation. In Proc. of Eurographics Symposium on Geometry Processing, pages 225--233, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. {RWP05a} M. Reuter, F.-E. Wolter, and N. Peinecke. Laplace-beltrami spectra as "shape-dna" of surfaces and solids. CAD Journal, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. {RWP05b} Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplacespectra as fingerprints for shape matching. In SPM '05: Proceedings of the 2005 ACM symposium on Solid and physical modeling, pages 101--106, New York, NY, USA, 2005. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. {SB92} L. S. Shapiro and J. M. Brady. Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10(5):283--288, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. {SGD05} P. Schröder, E. Grinspun, and M. Desbrun. Discrete differential geometry: an applied introduction. In SIGGRAPH Course Notes, 2005.Google ScholarGoogle Scholar
  66. {SM00} Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8):888--905, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. {SOG} Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum (Proc. of Symp. on Geom. Proc.).Google ScholarGoogle Scholar
  68. {Tau95a} G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351--358, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. {Tau95b} Gabriel Taubin. A signal processing approach to fair surface design. In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 351--358, New York, NY, USA, 1995. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. {TB97} Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.Google ScholarGoogle Scholar
  71. {TdSL00} J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319--2323, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  72. {THCM04} M. Tarini, K. Hormann, P. Cignoni, and C. Montani. Polycubemaps. ACM TOG (SIGGRAPH), 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. {vL06} Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report TR-149, Max Plank Institute for Biological Cybernetics, August 2006.Google ScholarGoogle Scholar
  74. {VM03} D. Verma and M. Meila. A comparison of spectral clustering algorithms. Technical Report UW-CSE-03-05-01, University of Washington, 2003.Google ScholarGoogle Scholar
  75. {VS01} D. V. Vranić and D. Saupe. 3D shape descriptor based on 3D Fourier transform. In Proc. EURASIP Conf. on Digital Signal Processing for Multimedia Communications and Services, 2001.Google ScholarGoogle Scholar
  76. {WBH+07} Max Wardetzky, Miklos Bergou, David Harmon, Denis Zorin, and Eitan Grinspun. Discrete quadratic curvature energies. Computer Aided Geometric Design (CAGD), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. {Wei99} Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proc. of the International Conference on Computer Vision, pages 975--983, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. {WK05} Jianhua Wu and Leif Kobbelt. Efficient spectral watermarking of large meshes with orthogonal basis functions. In The Visual Computer, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  79. {WMKG07} Max Wardetzky, Saurabh Mathur, Felix Kalberer, and Eitan Grinspun. Discrete laplace operators: No free lunch. Eurographics Symposium on Geometry Processing, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. {You85} F. W. Young. Multidimensional scaling. Encyclopedia of Statistical Sciences, 5:649--658, 1985.Google ScholarGoogle Scholar
  81. {ZKK02} Gil Zigelman, Ron Kimmel, and Nahum Kiryati. Texture mapping using surface flattening via multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics, 8(2), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. {ZL05} H. Zhang and R. Liu. Mesh segmentation via recursive and visually salient spectral cuts. In Proc. of Vision, Modeling, and Visualization, 2005.Google ScholarGoogle Scholar
  83. {ZSGS04} Kun Zhou, John Snyder, Baining Guo, and Heung-Yeung Shum. Iso-charts: Stretch-driven mesh parameterization using spectral analysis. In Symposium on Geometry Processing, pages 47--56, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. {ZvKDar} Hao Zhang, Oliver van Kaick, and Ramsay Dyer. Spectral mesh processing. Computer Graphics Forum, 2009, to appear. http://www.cs.sfu.ca/~haoz/pubs/zhang_cgf09_spect_survey.pdf.Google ScholarGoogle Scholar
  85. G. Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351--358, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Z. Karni and C. Gotsman. Spectral compression of mesh geometry. In Proc. of ACM SIGGRAPH, pages 279--286, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. A. K. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. F. R. K. Chung. Spectral Graph Theory. AMS, 1997.Google ScholarGoogle Scholar
  89. Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(8):888--905, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report TR-149, Max Plank Institute for Biological Cybernetics, August 2006.Google ScholarGoogle Scholar
  91. Varun Jain, Hao Zhang, and Oliver van Kaick. Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling, 13(1):101--124, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  92. H. Qiu and ER Hancock, Clustering and embedding using commute times, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007), no. 11, 1873--1890. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Hao Zhang, Oliver van Kaick, and Ramsay Dyer. Spectral mesh processing. Computer Graphics Forum, 2009, to appear. http://www.cs.sfu.ca/~haoz/pubs/zhang_cgf09_spect_survey.pdf.Google ScholarGoogle Scholar
  94. Rong Liu and Hao Zhang. Mesh segmentation via spectral embedding and contour analysis. Computer Graphics Forum (Special Issue of Eurographics 2007), 26:385--394, 2007.Google ScholarGoogle Scholar
  95. {EY36} Eckart C., Young G.: The approximation of one matrix by another of lower rank. Psychometrika 1 (1936), 211--218.Google ScholarGoogle ScholarCross RefCross Ref
  96. {BH03} Brand M., Huang K.: A unifying theorem for spectral embedding and clustering. In Proc. of Int. Conf. on AI and Stat. (Key West, Florida, 2003).Google ScholarGoogle Scholar
  97. Max Wardetzky, Saurabh Mathur, Felix Kalberer, and Eitan Grinspun. Discrete laplace operators: No free lunch. Eurographics Symposium on Geometry Processing, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. {VL08} Vallet B., Lévy B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (Special Issue of Eurographics) 27, 2 (2008), 251--260.Google ScholarGoogle Scholar
  99. Dyer, R., Zhang, H., and Möller, T. 2007. Delaunay mesh construction. In Symp. Geometry Processing, 271--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. {LZ06} Li J., Zhang H.: Nonobtuse remeshing and decimation. In SGP (2006), pp. 235--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. R. Liu, H. Zhang, A. Shamir, and D. Cohen-Or, "A Part-Aware Surface Metric for Shape Processing", Eurographics 2009Google ScholarGoogle Scholar
  102. A. Shamir, "A Survey on Mesh Segmentation Techniques", Computer Graphics Forum (Eurographics STAR 2006), 2008.Google ScholarGoogle Scholar
  103. F. de Goes, Siome Goldenstein, and Luiz Velho, "A hierarchical Segmentation of Articulated Bodies", SGP 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. R. Liu and H. Zhang, "Spectral Clustering for Mesh Segmentation", Pacific Graphics 2004.Google ScholarGoogle Scholar
  105. R. Liu and H. Zhang, "Mesh Segmentation via Spectral Embedding and Contour Analysis", Eurographics 2007.Google ScholarGoogle Scholar
  106. S. Katz and A. Tal, "Hierarchical Mesh Segmentation via Fuzzy Clustering and Cuts", SIGGRAPH 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. R. Rustomov, "Laplacian-Beltrami Eigenfunctions for Deformation Invariant Shape Representation", SGP 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. V. Jain, H. Zhang, O. van Kaick, "Non-Rigid Spectral Correspondence of Triangle Meshes, IJSM 2007.Google ScholarGoogle Scholar
  109. M. Ovsjanikov, J. Sun, and L. Guibas, "Global Intrinsic Symmetries of Shapes", SGP 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. V. Jain and H. Zhang, "A Spectral Approach to Shape-Based Retrieval of Articulated 3D Models", CAD 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, M. Meng, L. Guo, Y. Xiong, "Partial Intrinsic Reflectional Symmetry of 3D Shapes", SIGGRAPH Asia 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spectral mesh processing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '10: ACM SIGGRAPH 2010 Courses
        July 2010
        1132 pages
        ISBN:9781450303958
        DOI:10.1145/1837101

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader