skip to main content
10.1145/1866029.1866073acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Combining multiple depth cameras and projectors for interactions on, above and between surfaces

Published:03 October 2010Publication History

ABSTRACT

Instrumented with multiple depth cameras and projectors, LightSpace is a small room installation designed to explore a variety of interactions and computational strategies related to interactive displays and the space that they inhabit. LightSpace cameras and projectors are calibrated to 3D real world coordinates, allowing for projection of graphics correctly onto any surface visible by both camera and projector. Selective projection of the depth camera data enables emulation of interactive displays on un-instrumented surfaces (such as a standard table or office desk), as well as facilitates mid-air interactions between and around these displays. For example, after performing multi-touch interactions on a virtual object on the tabletop, the user may transfer the object to another display by simultaneously touching the object and the destination display. Or the user may "pick up" the object by sweeping it into their hand, see it sitting in their hand as they walk over to an interactive wall display, and "drop" the object onto the wall by touching it with their other hand. We detail the interactions and algorithms unique to LightSpace, discuss some initial observations of use and suggest future directions.

Skip Supplemental Material Section

Supplemental Material

293s-wilson.mp4

mp4

42.5 MB

References

  1. }}Bandyopadhyay, D., Raskar, R., and Fuchs, H. (2001). Dynamic shader lamps: Painting on movable objects. In Proc. of IEEE and ACM International Symposium on Augmented Reality (ISAR '01). 207--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. }}Benko, H., and Wilson, A. (2009). DepthTouch: Using Depth-Sensing Camera to Enable Freehand Interactions On and Above the Interactive Surface. Microsoft Research Technical Report MSR-TR-2009-23.Google ScholarGoogle Scholar
  3. }}Brooks, R. A., Coen, M., Dang, D., Bonet, J. D., Kramer, J., Lozano-Perez, T., Mellor, J., Pook, P., Stauffer, C., Stein, L., Torrance, M. and Wessler, M. (1997). The Intelligent Room Project. In Proc. of International Conference on Cognitive Technology (CT '97). 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. }}Cao, X., Forlines, C., and Balakrishnan, R. (2007). Multi-user interaction using handheld projectors. In Proc. of ACM UIST '07. 43--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. }}Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. (1993). Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In Proc. of ACM SIGGRAPH 93. 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. }}DeMenthon D. and Davis, L. S. (1995). Model-Based Object Pose in 25 Lines of Code. International Journal of Computer Vision, vol. 15, June 1995. 123--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. }}Deutscher, J. and Reid, I. (2005). Articulated Body Motion Capture by Stochastic Search. Int. Journal of Computer Vision 61, 2 (Feb.). 185--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. }}Fails, J. A., and Olsen, D. R. (2002) LightWidgets: Interacting in Everyday Spaces. In Proc. of IUI '02. 63--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. }}Harrison, C., Tan, D., and Morris, D. (2010). Skinput: Appropriating the Body as an Input Surface. In Proc. of ACM SIGCHI '10. 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. }}Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-Mendoza, A., and Butz, A. (2009). Interactions in the Air: Adding Further Depth to Interactive Tabletops. In Proc. of ACM UIST '09. 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. }}Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. (1994). A Survey of Design Issues in Spatial Input. In Proc. of ACM UIST '94. 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. }}Holman, D. and Vertegaal, R. (2008). Organic user interfaces: designing computers in any way, shape, or form. Comm. of the ACM 51, 6 (Jun. 2008). 48--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. }}Horn, B. K. P. (1987). Closed Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am. A, 4, 629--642.Google ScholarGoogle ScholarCross RefCross Ref
  14. }}Hua, H., Brown, L. D., and Gao, C. (2004). Scape: Supporting Stereoscopic Collaboration in Augmented and Projective Environments. IEEE Comput. Graph. Appl. 24, 1 (Jan. 2004). 66--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. }}Johanson, B., Fox, A. and Winograd, T. (2002). The Interactive Workspaces Project: Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Computing, Vol. 1 (2). 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. }}Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., and Shafer, S. (2000). Multi-camera multi-person tracking for EasyLiving. In Proc. of IEEE International Workshop on Visual Surveillance. 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. }}Lee, J. C., Hudson, S. E., Summet, J. W., and Dietz, P. H. (2005). Moveable interactive projected displays using projector based tracking. In Proc. of ACM UIST '05. 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. }}Mistry, P., and Maes, P. (2009) SixthSense - A Wearable Gestural Interface. SIGGRAPH Asia '09, Emerging Technologies. Yokohama, Japan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. }}Pinhanez, C. S. (2001). The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces. In Proc. of the International Conference on Ubiquitous Computing (UBICOMP). 315--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. }}Piper, B., Ratti, C., and Ishii, H. (2002) Illuminating Clay: A 3-D Tangible Interface for Landscape Analysis. In Proc. of ACM SIGCHI '02. 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. }}Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. (1998). The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays. In Proc. of ACM SIGGRAPH '98. 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. }}Rekimoto, J. and Saitoh, M. (1999). Augmented Surfaces: A Spatially Continuous Work Space for Hybrid Computing Environments. In Proc. of ACM SIGCHI '99. 378--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. }}Starner, T., Leibe, B., Minnen, D., Westeyn, T., Hurst, A., and Weeks, J. (2003). The Perceptive Workbench: Computer-Vision-Based Gesture Tracking, Object Tracking, and 3D Reconstruction for Augmented Desks. Machine Vision and Applications, vol. 14, 51--71.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. }}Streitz, N., Geißler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl, W., Rexroth, P., Seitz, P., and Steinmetz, R. (1999). i-LAND: An Interactive Landscape for Creativity and Innovation. In Proc. of ACM SIGCHI '99. 120--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. }}Underkoffler, J., Ullmer, B., and Ishii, H. (1999). Emancipated pixels: Real-world graphics in the luminous room. In Proc. of ACM SIGGRAPH '99. 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. }}Wellner, P. (1993). Interacting with paper on the DigitalDesk. Communications of the ACM. 36, 7 (Jul. 1993). 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. }}Wilson, A. (2005). PlayAnywhere: A Compact Tabletop Computer Vision System. In Proc. of ACM UIST '05. 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. }}Wilson, A. (2007) Depth-Sensing Video Cameras for 3D Tangible Tabletop Interaction. In Proc. of IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP '07). 201--204.Google ScholarGoogle ScholarCross RefCross Ref
  29. }}Wilson, A. D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and Kirk, D. (2008). Bringing physics to the surface. In Proc. of ACM UIST '08. 67--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. }}Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A. (1997). Pfinder: real-time tracking of the human body, IEEE Trans. PAMI 19 (7). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. }}Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM Comput. Surv. 38, 4 (Dec. '06), Article #13. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Combining multiple depth cameras and projectors for interactions on, above and between surfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '10: Proceedings of the 23nd annual ACM symposium on User interface software and technology
      October 2010
      476 pages
      ISBN:9781450302715
      DOI:10.1145/1866029

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 October 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader