skip to main content
10.1145/1978942.1979385acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Geckos: combining magnets and pressure images to enable new tangible-object design and interaction

Published:07 May 2011Publication History

ABSTRACT

In this paper we present Geckos, a new type of tangible objects which are tracked using a Force-Sensitive Resistance sensor. Geckos are based on low-cost permanent magnets and can also be used on non-horizontal surfaces. Unique pressure footprints are used to identify each tangible Gecko. Two types of tangible object designs are presented: Using a single magnet in combination with felt pads provides new pressure-based interaction modalities. Using multiple separate magnets it is possible to change the marker footprint dynamically and create new haptic experiences. The tangible object design and interaction are illustrated with example applications. We also give details on the feasibility and benefits of our tracking approach and show compatibility with other tracking technologies.

Skip Supplemental Material Section

Supplemental Material

paper973.mp4

mp4

59.2 MB

References

  1. Bartindale, T. and Harrison, C. Stacks on the surface: resolving physical order with masked fiducial markers. In Proc. ITS'09, ACM Press (2009), 57--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baudisch, P., Becker, T., and Rudeck, F. Lumino: tangible blocks for tabletop computers based on glass fiber bundles. In Proc. CHI '10. ACM Press (2010), 1165--1174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Crevoisier, A. and Polotti, P. Tangible acoustic inter-faces and their applications for the design of new musical instruments. In Proc. NIME '05, 97--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Echtler, F., Huber, M., Klinker, G. Hand tracking for enhanced gesture recognition on interactive multi-touch surfaces, Technical Report TUM-I-07--21, Technische Universitat Munchen - Institut fur Informatik (2007).Google ScholarGoogle Scholar
  5. Fitzmaurice, W., Ishii, H., and Buxton, W. Bricks: Laying the Foundations for Graspable User Interfaces. In Proc. CHI '95, ACM Press (1995), 442--"449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Guimbretiere, F., V. Fluid Interaction for High Resolution Wall-Size Displays. Ph.D. Dissertation. Stanford University, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Guo, C., and Sharlin, E. Exploring the Use of Tangible User Interfaces for Human-Robot Interaction: A Comparative Study. In Proc. CHI '08, ACM Press (2008), 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Haller, M., Leitner, J., Seifried, T., Wallace, J. R., Scott, S. D., Richter, C., Brandl, P., Gokcezade, A., Hunter, S. The NiCE Discussion Room: Integrating Paper and Digital Media to Support Co-Located Group Meetings. In Proc. CHI '10, ACM Press (2010), 609--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Han, J. Y. Low-cost multi-touch sensing through frustrated total internal reflection. In Proc. UIST '05, ACM Press (2005), 115--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Holzmann, C., Hader, A., Towards tabletop interaction with everyday artifacts via pressure imaging. In Proc. TEI'10, ACM Press (2010), 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. http://kommerz.at/en/Produkte/MRI.htmlGoogle ScholarGoogle Scholar
  12. http://multi-touch-screen.com/product_plus.htmlGoogle ScholarGoogle Scholar
  13. http://uk.mimio.com/en-GB.aspxGoogle ScholarGoogle Scholar
  14. http://www.blueobject.de/Seiten/produkte/Magnetsegel/magfloor/magfloor_einstieg.htmlGoogle ScholarGoogle Scholar
  15. http://www.displax.com/en/future-labs/multitouch-technology.htmlGoogle ScholarGoogle Scholar
  16. http://www.jazzmutant.com/lemur_overview.phpGoogle ScholarGoogle Scholar
  17. http://www.microsoft.com/surface/en/us/default.aspxGoogle ScholarGoogle Scholar
  18. http://www.naturalpoint.com/optitrack/Google ScholarGoogle Scholar
  19. http://www.sensibleui.com/Google ScholarGoogle Scholar
  20. Ishii, H., Ullmer, B. Tangible bits: towards seamless interfaces between people, bits and atoms. In Proc. CHI '97, ACM (1997), 234--"241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jackson, D., Bartindale, T. and Olivier, P. FiberBoard: compact multi-touch display using channeled light. In Proc. ITS'09, ACM Press (2009), 25--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jorda, S, Geiger, G., Alonso, M., Kaltenbrunner, M. The reacTable: exploring the synergy between live mu-sic performance and tabletop tangible interfaces. In Proc. TEI '07, ACM Press (2007), 139--146 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Klemmer, S. R., Newman, M. W., Farrell, R., Bilezikjian, M., and Landay, J. A. The designers' outpost: a tangible interface for collaborative web site. In Proc. UIST '01. ACM Press (2001), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. Tesler, 'The Smalltalk Environment', Byte, August 1981, 90--147.Google ScholarGoogle Scholar
  25. Matsushita, N. and Rekimoto, J. HoloWall: designing a finger, hand, body, and object sensitive wall. In Proc. UIST '97, ACM Press (1997), 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pangaro, G., Maynes-Aminzade, D., Ishii, H. The actuated workbench: computer-controlled actuation in tabletop tangible interfaces, In Proc. UIST '02, ACM Press (2002), 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Paradiso, J. A., Hsiao, K., and Benbasat, A. Tangible music interfaces using passive magnetic tags. In Proc. NIME'01, National University of Singapore (2001), 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sense-table: a wireless object tracking platform for tangible user interfaces. In Proc. CHI '01, ACM Press 2001, 25--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pintaric, T. and Kaufmann, H. A rigid-body target design methodology for optical pose-tracking systems. In Proc. VRST '08. ACM Press (2008), 73--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Rosenberg, I. and Perlin, K. 2009. The UnMousePad: an interpolating multi-touch force-sensing input pad. In Proc. SIGGRAPH'09, ACM Press (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Saund, E., Lank, e. Stylus input and editing without prior selection of mode. In UIST '03. ACM Press (2003), 213--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schmidt, A., Strohbach, M., van Laerhoven, K., and Gellersen, H. Ubiquitous interaction - using surfaces in everyday environments as pointing devices. In Proc. ERCIM'02. Springer-Verlag (2002), 263--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tseng, T., Bryant, C. and Blikstein, P. Mechanix: An Interactive Display for Exploring Engineering Design through a Tangible Interface. In Proc. TEI'11, ACM Press (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Van Laerhoven, K., Villar, N., Hakansson, M., Gellersen, H. Pin&Play: bringing power and networking to wall-mounted appliances. In Proc. IWNA'02, IEEE Press (2002), 131--136.Google ScholarGoogle Scholar
  35. Ward, A., Jones, A., and Hopper, A. A new location technique for the active office. In IEEE Pers. Comm. Vol. 4, Issue 5, IEEE Press (1997), 42--47.Google ScholarGoogle ScholarCross RefCross Ref
  36. Weiss, M. Schwarz, F., Jakubowski, S., and Borchers, J. Madgets: Actuating Widgets on Interactive Tabletops. In Proc. UIST '10, ACM Press (2010), 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Kho-shabeh, R., Hollan, J.D., and Borchers, J. SLAP wid-gets: bridging the gap between virtual and physical controls on tabletops. In Proc. CHI '09, ACM Press (2009), 481--"490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xu, D., Read, J., Mazzone, E., Bron, M. Designing and Testing a Tangible Interface Prototype. In Proc. IDC '07, ACM Press (2007), 25--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zeleznik, R., Miller, T. Fluid inking: augmenting the medium of free-form inking with gestures. In Proc. GI '06. Canadian Information Processing Society (2006), 155--160. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Geckos: combining magnets and pressure images to enable new tangible-object design and interaction
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
        May 2011
        3530 pages
        ISBN:9781450302289
        DOI:10.1145/1978942

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 May 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        CHI '11 Paper Acceptance Rate410of1,532submissions,27%Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader