skip to main content
10.1145/1993744.1993767acmconferencesArticle/Chapter ViewAbstractPublication PagesmetricsConference Proceedingsconference-collections
research-article

Greening geographical load balancing

Authors Info & Claims
Published:07 June 2011Publication History

ABSTRACT

Energy expenditure has become a significant fraction of data center operating costs. Recently, "geographical load balancing" has been suggested to reduce energy cost by exploiting the electricity price differences across regions. However, this reduction of cost can paradoxically increase total energy use.

This paper explores whether the geographical diversity of Internet-scale systems can additionally be used to provide environmental gains. Specifically, we explore whether geographical load balancing can encourage use of "green" renewable energy and reduce use of "brown" fossil fuel energy. We make two contributions. First, we derive two distributed algorithms for achieving optimal geographical load balancing. Second, we show that if electricity is dynamically priced in proportion to the instantaneous fraction of the total energy that is brown, then geographical load balancing provides significant reductions in brown energy use. However, the benefits depend strongly on the degree to which systems accept dynamic energy pricing and the form of pricing used.

Skip Supplemental Material Section

Supplemental Material

metrics_6_2.mp4

mp4

129.5 MB

References

  1. US Census Bureau, http://www.census.gov.Google ScholarGoogle Scholar
  2. Server and data center energy efficiency, Final Report to Congress, U.S. Environmental Protection Agency, 2007.Google ScholarGoogle Scholar
  3. V. K. Adhikari, S. Jain, and Z.-L. Zhang. YouTube traffic dynamics and its interplay with a tier-1 ISP: An ISP perspective. In ACM IMC, pages 431--443, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Albers. Energy-efficient algorithms. Comm. of the ACM, 53(5):86--96, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. L. H. Andrew, M. Lin, and A. Wierman. Optimality, fairness and robustness in speed scaling designs. In Proc. ACM Sigmetrics, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya. A taxonomy and survey of energy-efficient data centers and cloud computing systems, Technical Report, 2010.Google ScholarGoogle Scholar
  7. D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.Google ScholarGoogle Scholar
  8. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena Scientific, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Carley. State renewable energy electricity policies: An empirical evaluation of effectiveness. Energy Policy, 37(8):3071--3081, Aug 2009.Google ScholarGoogle ScholarCross RefCross Ref
  11. Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Managing server energy and operational costs in hosting centers. In Proc. ACM Sigmetrics, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Conti and C. Nazionale. Load distribution among replicated web servers: A QoS-based approach. In Proc. ACM Worksh. Internet Server Performance, 1999.Google ScholarGoogle Scholar
  13. A. Croll and S. Power. How web speed affects online business KPIs. http://www.watchingwebsites.com, 2009.Google ScholarGoogle Scholar
  14. X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized computer. In Proc. Int. Symp. Comp. Arch., 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Fripp and R. H. Wiser. Effects of temporal wind patterns on the value of wind-generated electricity in california and the northwest. IEEE Trans. Power Systems, 23(2):477--485, May 2008.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in server farms. In Proc. ACM Sigmetrics, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. http://www.datacenterknowledge.com, 2008.Google ScholarGoogle Scholar
  18. http://www.eia.doe.gov.Google ScholarGoogle Scholar
  19. S. Irani and K. R. Pruhs. Algorithmic problems in power management. SIGACT News, 36(2):63--76, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. T. A. Kattakayam, S. Khan, and K. Srinivasan. Diurnal and environmental characterization of solar photovoltaic panels using a PC-AT add on plug in card. Solar Energy Materials and Solar Cells, 44(1):25--36, Oct 1996.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Kaxiras and M. Martonosi. Computer Architecture Techniques for Power-Efficiency. Morgan & Claypool, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. Anderson, and J. Gao. Moving beyond end-to-end path information to optimize CDN performance. In Proc. ACM Sigcomm, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, and M. Martonosi. Capping the brown energy consumption of internet services at low cost. In Proc. IGCC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for power-proportional data centers. In Proc. IEEE INFOCOM, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  25. Z. M. Mao, C. D. Cranor, F. Bouglis, M. Rabinovich, O. Spatscheck, and J. Wang. A precise and efficient evaluation of the proximity between web clients and their local DNS servers. In USENIX, pages 229--242, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based approaches. In Proc. IEEE INFOCOM, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  27. S. Ong, P. Denholm, and E. Doris. The impacts of commercial electric utility rate structure elements on the economics of photovoltaic systems. Technical Report NREL/TP-6A2-46782, National Renewable Energy Laboratory, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Pakbaznia and M. Pedram. Minimizing data center cooling and server power costs. In Proc. ISLPED, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. On the responsiveness of DNS-based network control. In Proc. IMC, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. M. Pathan, C. Vecchiola, and R. Buyya. Load and proximity aware request-redirection for dynamic load distribution in peering CDNs. In Proc. O™, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting the electric bill for internet-scale systems. In Proc. ACM Sigcomm, Aug. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity cost: Optimization of distributed internet data centers in a multi-electricity-market environment. In INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.Google ScholarGoogle Scholar
  34. R. Stanojevic and R. Shorten. Distributed dynamic speed scaling. In Proc. IEEE INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. W. Theilmann and K. Rothermel. Dynamic distance maps of the internet. In Proc. IEEE INFOCOM, 2001.Google ScholarGoogle Scholar
  36. E. Thereska, A. Donnelly, and D. Narayanan. Sierra: a power-proportional, distributed storage system. Technical Report MSR-TR-2009-153, Microsoft Research, 2009.Google ScholarGoogle Scholar
  37. O. S. Unsal and I. Koren. System-level power-aware deisgn techniques in real-time systems. Proc. IEEE, 91(7):1055--1069, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  38. R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Dynamic resource allocation and power management in virtualized data centers. In IEEE NOMS, Apr. 2010.Google ScholarGoogle ScholarCross RefCross Ref
  39. P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. Donar: decentralized server selection for cloud services. In Proc. ACM Sigcomm, pages 231--242, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing systems. In Proc. IEEE INFOCOM, 2009.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Greening geographical load balancing

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGMETRICS '11: Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems
        June 2011
        376 pages
        ISBN:9781450308144
        DOI:10.1145/1993744

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 June 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate459of2,691submissions,17%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader