skip to main content
10.1145/2020408.2020515acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Fast clustering using MapReduce

Published:21 August 2011Publication History

ABSTRACT

Clustering problems have numerous applications and are becoming more challenging as the size of the data increases. In this paper, we consider designing clustering algorithms that can be used in MapReduce, the most popular programming environment for processing large datasets. We focus on the practical and popular clustering problems, k-center and k-median. We develop fast clustering algorithms with constant factor approximation guarantees. From a theoretical perspective, we give the first analysis that shows several clustering algorithms are in MRC0, a theoretical MapReduce class introduced by Karloff et al. [26]. Our algorithms use sampling to decrease the data size and they run a time consuming clustering algorithm such as local search or Lloyd's algorithm on the resulting data set. Our algorithms have sufficient flexibility to be used in practice since they run in a constant number of MapReduce rounds. We complement these results by performing experiments using our algorithms. We compare the empirical performance of our algorithms to several sequential and parallel algorithms for the k-median problem. The experiments show that our algorithms' solutions are similar to or better than the other algorithms' solutions. Furthermore, on data sets that are sufficiently large, our algorithms are faster than the other parallel algorithms that we tested.

References

  1. Google: Cluster computing and mapreduce. http://code.google.com/edu/submissions/mapreduce-minilecture/listing.html.Google ScholarGoogle Scholar
  2. P. K. Agarwal and N. H. Mustafa. k-means projective clustering. In PODS, pages 155--165, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Arthur and S. Vassilvitskii. k-means: the advantages of careful seeding. In SODA, pages 1027--1035, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM J. Comput., 33(3):544--562, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In FOCS, pages 184--193, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Y. Bartal. On approximating arbitrary metrices by tree metrics. In STOC, pages 161--168, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Berry. Mapreduce and k-means clustering. http://blog.data-miners.com/2008/02/mapreduce-and-k-means-clustering.html, 2008.Google ScholarGoogle Scholar
  8. G. E. Blelloch and K. Tangwongsan. Parallel approximation algorithms for facility-location problems. In SPAA, pages 315--324, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. SIAM J. Comput., 33(6):1417--1440, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding via trees: Deterministic approximation algorithms for group steiner trees and k-median. In STOC, pages 114--123, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median problems. In FOCS, pages 378--388, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129--149, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. Chen. On k-median clustering in high dimensions. In SODA, pages 1177--1185, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Chen. A constant factor approximation algorithm for k-median clustering with outliers. In SODA, pages 826--835, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in map-reduce. In WWW, pages 231--240, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In Proceedings of OSDI, pages 137--150, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations Research Letters, 3(6):285 -- 288, 1985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina. On distributing symmetric streaming computations. ACM Transactions on Algorithms, 6(4), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293 -- 306, 1985.Google ScholarGoogle Scholar
  20. S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl. Data Eng., 15(3):515--528, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. CoRR, abs/0809.2554, 2008.Google ScholarGoogle Scholar
  22. R. Herwig, A. J. Poustka, C. Müller, C. Bull, H. Lehrach, and J. O'Brien. Large-Scale Clustering of cDNA-Fingerprinting Data. Genome Research, 9(11):1093--1105, November 1999.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem. Mathematics of Operations Research, 10(2):180--184, May 1985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In STOC, pages 731--740. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi: Fast diameter estimation and mining in massive graphs with hadoop. Technical report, School of Computer Science, Carnegie Mellon University Pittsburgh, December 2008.Google ScholarGoogle Scholar
  26. H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce. In SODA, pages 938--948, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129--136, 1982.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Ma and I. K. Sethi. Distributed k-median clustering with application to image clustering. In PRIS, pages 215--220, 2007.Google ScholarGoogle Scholar
  30. G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD Conference, pages 135--146, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers and with anonymity. In APPROX-RANDOM, pages 165--178, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. SIAM J. Comput., 34(2):405--432, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. T. White. Hadoop: The Definitive Guide. O'Reilly Media, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast clustering using MapReduce

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '11: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining
      August 2011
      1446 pages
      ISBN:9781450308137
      DOI:10.1145/2020408

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader