skip to main content
research-article

Clearing the RF smog: making 802.11n robust to cross-technology interference

Authors Info & Claims
Published:15 August 2011Publication History
Skip Abstract Section

Abstract

Recent studies show that high-power cross-technology interference is becoming a major problem in today's 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel.

This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.

Skip Supplemental Material Section

Supplemental Material

sigcomm_5_3.mp4

mp4

116.2 MB

References

  1. 20 Myths of Wi-Fi Interference: Dispel Myths to Gain High-Performing and Reliable Wireless, White paper C11-44927.1-00, Cisco, December 2007.Google ScholarGoogle Scholar
  2. 2.4GHz 4-Channel Wireless Receiver and 4 Wireless Infrared Color Cameras, Genica. www.genica.com.Google ScholarGoogle Scholar
  3. AirMaestro Spectrum Analysis Solution, Bandspeed. www.bandspeed.com.Google ScholarGoogle Scholar
  4. ArrayComm. www.arraycomm.com.Google ScholarGoogle Scholar
  5. Bluetooth Basics, Bluetooth SIG Inc., 2011. www.bluetooth.com.Google ScholarGoogle Scholar
  6. Cisco CleanAir Technology, Cisco. www.cisco.com/en/US/netsol/ns1070/index.html.Google ScholarGoogle Scholar
  7. Estimating the Utilisation of Key License-Exempt Spectrum Bands, Final Report REP003, Mass Consultants Ltd., Ofcom, April 2009.Google ScholarGoogle Scholar
  8. Evaluating Interference in Wireless LANs: Recommended Practice, White paper FPG 2010-135.1, Farpoint Group Technical Note, April 2010.Google ScholarGoogle Scholar
  9. Fury GPS Disciplined Oscillator, Jackson Labs. www.jackson-labs.com.Google ScholarGoogle Scholar
  10. Miercom: Cisco CleanAir Competitive Testing, Lab Test Rerpot DR100409D, Miercom, April 2010.Google ScholarGoogle Scholar
  11. Motorola Airdefense Solutions, Motorola www.airdefense.net.Google ScholarGoogle Scholar
  12. Uniden TRU4465: Dual Handset Powermax 2.4GHz Cordless Systems, Uniden. www.uniden.com.Google ScholarGoogle Scholar
  13. Universal Software Radio Peripheral, Ettus Inc www.ettus.com.Google ScholarGoogle Scholar
  14. Wireless RF Interference Customer Survey Result, White paper C11-609300-00, Cisco, 2010.Google ScholarGoogle Scholar
  15. Local and metropolitan area networks--specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11, October 2009.Google ScholarGoogle Scholar
  16. E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-user Beamforming in Wireless LANs. In Proc. ACM MobiCom 2010, pages 197--208, Chicago, IL, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Bandspeed. Understanding the Effects of Radio Frequency (RF) Interference on WLAN performance and Security, 2010.Google ScholarGoogle Scholar
  18. L. Cao, L. Yang, and H. Zheng. The Impact of Frequency-Agility on Dynamic Spectrum Sharing. In Proc. IEEE DySPAN 2010, pages 1--12, Singapore, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl. A Case for Adapting Channel Width in Wireless Networks. In Proc. ACM SIGCOMM 2008, pages 135--146, Seattle, WA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in Wireless Networks. In Proc. ACM SIGCOMM 2008, pages 159--170, Seattle, WA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Gollakota, S. D. Perli, and D. Katabi. Interferenc Alignment and Cancellation. In Proc. ACM SIGCOMM 2009, pages 159--170, Barcelona, Spain, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Halperin, J. Ammer, T. Anderson, and D. Wetherall Interference Cancellation: Better Receivers for a New Wireless MAC. In Proc. ACM HotNets 2007, Atlanta, GA, 2007.Google ScholarGoogle Scholar
  23. Y. He, J. Fang, J. Zhang, H. Shen, K. Tan, and Y. Zhang. MPAP: Virtualization Architecture for Heterogenous Wireless APs. In Proc. ACM SIGCOMM 2010, pages 475--476, New Delhi, India, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams Publishing, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recover for Wireless Networks. In Proc. ACM SIGCOMM 2007, pages 409--420, Kyoto, Japan, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference:Analog Network Coding. In Proc. ACM SIGCOMM 2007, pages 397--408, Kyoto, Japan, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbo Level Network Coding for Wireless Mesh Networks. In Proc. ACM SIGCOMM 2008, pages 401--412, Seattle, WA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Ketchum, S. Nanda, R. Walton, S. Howard, M. Wallace, B. Bjerke, I. Medvedev, S. Abraham, A. Meylan, and S. Surineni. System Description and Operating Principles for High Throughput Enhancements to 802.11, QUALCOMM Inc., April 2005.Google ScholarGoogle Scholar
  29. K. Lakshminarayanan, S. Sapra, S. Seshan, and P. Steenkiste. RFDump: An Architecture for Monitoring the Wireless Ether. In Proc. CoNEXT 2009, pages 253--264, Rome, Italy, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Mishra, R. Brodersen, S. Brink, and R. Mahadevappa. Detect and Avoid: An Ultra-Wideband/WiMAX Coexistence Mechanism. IEEE Communications Magazine, 45(6):68--75, June 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan. Load-Aware Spectrum Distribution in Wireless LANs. In Proc. IEEE ICNP 2008, pages 137--146, Orlando, FL, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat Learning to Share: Narrowband-Friendly Wideband Networks. In Proc. ACM SIGCOMM 2008, pages 147--158, Seattle, WA, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. SourceForge. iperf.sourceforge.net.Google ScholarGoogle Scholar
  34. T. Taher, M. Misurac, J. LoCicero, and D. Ucci. Microwave Oven Signal Modelling. In Proc. IEEE WCNC 2008, pages 1235--1238, Las Vegas, NV, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  35. K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker. SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In Proc. ACM MobiCom 2009, pages 49--60, Beijing, China, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Tse and P. Vishwanath. Fundamentals of Wireles Communications. Cambridge University Press, May 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Laye Wireless Bit Rate Adaptation. In Proc. ACM SIGCOMM 2009, pages 3--14, Barcelona, Spain, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng. Supporting Demanding Wireless Applications with Frequency-Agile Radios. In Proc. USENIX NSDI 2010, pages 5--5, San Jose, CA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. P. Zetterberg. Experimental Investigation of TDD Reciprocit Based Zero-Forcing Transmit Precoding. EURASIP J. Adv. Signal Process, 2011:5:1-5:10, January 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Zhao, Y. Q. Shi, and N. Ansari. Hiding Data in Multimedia Streaming over Networks. In Proc. CNSR 2010, pages 50--55, Montreal, QC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Clearing the RF smog: making 802.11n robust to cross-technology interference

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 41, Issue 4
        SIGCOMM '11
        August 2011
        480 pages
        ISSN:0146-4833
        DOI:10.1145/2043164
        Issue’s Table of Contents
        • cover image ACM Conferences
          SIGCOMM '11: Proceedings of the ACM SIGCOMM 2011 conference
          August 2011
          502 pages
          ISBN:9781450307970
          DOI:10.1145/2018436

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 August 2011

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader