skip to main content
10.1145/2047196.2047265acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

Authors Info & Claims
Published:16 October 2011Publication History

ABSTRACT

We introduce a novel input device, deForm, that supports 2.5D touch gestures, tangible tools, and arbitrary objects through real-time structured light scanning of a malleable surface of interaction. DeForm captures high-resolution surface deformations and 2D grey-scale textures of a gel surface through a three-phase structured light 3D scanner. This technique can be combined with IR projection to allow for invisible capture, providing the opportunity for co-located visual feedback on the deformable surface. We describe methods for tracking fingers, whole hand gestures, and arbitrary tangible tools. We outline a method for physically encoding fiducial marker information in the height map of tangible tools. In addition, we describe a novel method for distinguishing between human touch and tangible tools, through capacitive sensing on top of the input surface. Finally we motivate our device through a number of sample applications.

Skip Supplemental Material Section

Supplemental Material

fp220.mp4

mp4

17.4 MB

References

  1. Xbox.com | Kinect. 2010. http://www.xbox.com/en-US/kinect.Google ScholarGoogle Scholar
  2. ofxStructured Light. http://code.google.com/p/structured-light/.Google ScholarGoogle Scholar
  3. Cassinelli, A. and Ishikawa, M. Khronos projector. ACM SIGGRAPH 2005 Emerging Technologies, ACM Press (2005), 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chan, L.W., Wu, H.T., Kao, H.S., Lin, H.R., Chen, M.Y,Hsu, Jane, Hung, Y.P. Enabling beyond-surface interactions for interactive surface with an invisible projection. Proc. UIST 2010, ACM Press (2010), 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Han, J.Y. Low-cost multi-touch sensing through frustrated total internal reflection. Proc. UIST 2005, ACM Press (2005), 115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Garcia-Mendoza, A., and Butz, A. Interactions in the Air : Adding Further Depth to Interactive Tabletops. Proc. UIST 2009, ACM Press (2009), 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hilliges, O., Kim, D., and Izadi, S. Creating malleable interactive surfaces using liquid displacement sensing. Proc. Tabletop 2008, IEEE Press (2008), 157--160.Google ScholarGoogle ScholarCross RefCross Ref
  8. Hook, J., Taylor, S., Butler, A., Villar, N., and Izadi, S. A reconfigurable ferromagnetic input device. Proc. UIST 2009, ACM Press (2009), 51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ishii, H. and Ullmer, B. Tangible bits. Proc. CHI 1997, ACM Press (1997), 234--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Izadi, S., Hodges, S., Taylor, S., et al. Going beyond the display. Proc. UIST 2008, ACM Press (2008), 269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jansen, Y., Karrer, T., and Borchers, J. MudPad: tactile feedback and haptic texture overlay for touch surfaces. Proc. ITS 2010, ACM Press (2010), 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Johnson, M.K. and Adelson, E.H. Retrographic sensing for the measurement of surface texture and shape. Proc. IEEE CVPR 2009, IEEE Press (2009), 1070--1077.Google ScholarGoogle ScholarCross RefCross Ref
  13. Kaltenbrunner, M. and Bencina, R. reacTIVision. Proc. TEI 2007, ACM Press (2007), 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lanman, D. and Taubin, G. Build your own 3D scanner. ACM SIGGRAPH 2009 Courses, ACM Press (2009), 1--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Large, M.J., Large, T., and Travis, A.R.L. Parallel Optics in Waveguide Displays: A Flat Panel Autostereoscopic Display. Journal of Display Technology 6, 10 (2010), 431--437.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lecuyer, A., Coquillart, S., Kheddar, A., Richard, P., and Coiffet, P. Pseudo-haptic feedback: can isometric input devices simulate force feedback? Proc. IEEE Virtual Reality 2000, IEEE Comput. Soc, 83--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lei, S. and Zhang, S. Flexible 3-D shape measurement using projector defocusing. Optics Letters 34, 20 (2009), 3080.Google ScholarGoogle ScholarCross RefCross Ref
  18. Malik, S. and Laszlo, J. Visual touchpad. Proc. ICMI 2004, ACM Press (2004), 289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Massie, T.H. and Salisbury, J.K. The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. Proceedings of the ASME Winter Annual Meeting Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, (1994), 295--300.Google ScholarGoogle Scholar
  20. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. Efficiently combining positions and normals for precise 3D geometry. ACM Transactions on Graphics 24, 3 (2005), 536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Otsuki, M., Sugihara, K., Kimura, A., Shibata, F., and Tamura, H. MAI painting brush: an interactive device that realizes the feeling of real painting. Proc. UIST 2010, ACM Press (2010), 97--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Overholt, D. The MATRIX: a novel controller for musical expression. Proc. NIME 2001, AMC (2001), 1--4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Piper, B., Ratti, C., and Ishii, H. Illuminating clay. Proc. CHI 2002, ACM Press (2002), 355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rosenberg, I. and Perlin, K. The UnMousePad. Proc. SIGGRAPH 2009, ACM Press (2009), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sato, T., Mamiya, H., Tokui, T., Koike, H., and Fukuchi, K. PhotoelasticTouch: transparent rubbery interface using a LCD and photoelasticity. ACM SIGGRAPH 2009 Emerging Technologies, ACM (2009), 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sheng, J., Balakrishnan, R., and Singh, K. An interface for virtual 3D sculpting via physical proxy. Computer graphics and interactive techniques in Australasia and South East Asia, (2006), 213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sile O'Modhrain. Playing by Feel: Incorporating Haptic Feedback into Computer-Based musical Instruments. 2000. https://ccrma.stanford.edu/~sile/thesis.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sinclair, M. The haptic lens. Ext. Abstracts ACM SIGGRAPH '97, ACM Press (1997), 179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Smith, J.D., Graham, T.C.N., Holman, D., and Borchers, J. Low-Cost Malleable Surfaces with Multi-Touch Pressure Sensitivity. TABLETOP 2007, IEEE (2007), 205--208.Google ScholarGoogle Scholar
  30. Tom White. Introducing Liquid Haptics in High Bandwidth Human Computer Interfaces. 1998. http://dspace.mit.edu/handle/1721.1/62938.Google ScholarGoogle Scholar
  31. Valino Koh, J.T.K., Karunanayaka, K., Sepulveda, J., Tharakan, M.J., Krishnan, M., and Cheok, A.D. Liquid interface. Proc. ACE 2010, ACM Press (2010), 45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vandoren, P., Van Laerhoven, T., Claesen, L., Taelman, J., Raymaekers, C., and Van Reeth, F. IntuPaint: Bridging the gap between physical and digital painting. TABLETOP 2008, IEEE (2008), 65--72.Google ScholarGoogle ScholarCross RefCross Ref
  33. Viciana-Abad, R., Lecuona, A.R., and Poyade, M. The Influence of Passive Haptic Feedback and Difference Interaction Metaphors on Presence and Task Performance. Presence: Teleoperators and Virtual Environments 19, 3 (2010), 197--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Vlack, K., Mizota, T., Kawakami, N., Kamiyama, K., Kajimoto, H., and Tachi, S. Gelforce: a vision-based traction field computer interface. Ext. Abstracts CHI 2005, ACM Press (2005), 1154--1155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vogt, F., Chen, T., Hoskinson, R., and Fels, S. A malleable surface touch interface. ACM SIGGRAPH 2004 Sketches, ACM Press (2004), 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weiss, M., Wagner, J., Jansen, Y., et al. SLAP widgets. Proc. CHI 2009, ACM Press (2009), 481. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wilson, A.D., Izadi, S., Hilliges, O., Garcia-Mendoza, A., and Kirk, D. Bringing physics to the surface. Proc. UIST 2008, ACM Press (2008), 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wilson, A.D. TouchLight. Proc. ICMI 2004, ACM Press (2004), 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhang, S. and Yau, S.-T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Applied Optics 46, 1 (2007), 36.Google ScholarGoogle ScholarCross RefCross Ref
  40. Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering 48, 2 (2010), 149--158..Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. deForm: an interactive malleable surface for capturing 2.5D arbitrary objects, tools and touch

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '11: Proceedings of the 24th annual ACM symposium on User interface software and technology
      October 2011
      654 pages
      ISBN:9781450307161
      DOI:10.1145/2047196

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '11 Paper Acceptance Rate67of262submissions,26%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader