skip to main content
research-article

The university of Florida sparse matrix collection

Published:07 December 2011Publication History
Skip Abstract Section

Abstract

We describe the University of Florida Sparse Matrix Collection, a large and actively growing set of sparse matrices that arise in real applications. The Collection is widely used by the numerical linear algebra community for the development and performance evaluation of sparse matrix algorithms. It allows for robust and repeatable experiments: robust because performance results with artificially generated matrices can be misleading, and repeatable because matrices are curated and made publicly available in many formats. Its matrices cover a wide spectrum of domains, include those arising from problems with underlying 2D or 3D geometry (as structural engineering, computational fluid dynamics, model reduction, electromagnetics, semiconductor devices, thermodynamics, materials, acoustics, computer graphics/vision, robotics/kinematics, and other discretizations) and those that typically do not have such geometry (optimization, circuit simulation, economic and financial modeling, theoretical and quantum chemistry, chemical process simulation, mathematics and statistics, power networks, and other networks and graphs). We provide software for accessing and managing the Collection, from MATLAB™, Mathematica™, Fortran, and C, as well as an online search capability. Graph visualization of the matrices is provided, and a new multilevel coarsening scheme is proposed to facilitate this task.

References

  1. Amestoy, P. R., Davis, T. A., and Duff, I. S. 1996. An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 4, 886--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amestoy, P. R., Davis, T. A., and Duff, I. S. 2004. Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 3, 381--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amestoy, P. R., Li, X., and Ng, E. G. 2007. Diagonal Markowitz scheme with local symmetrization. SIAM J. Matrix Anal. Appl. 29, 1, 228--244.Google ScholarGoogle ScholarCross RefCross Ref
  4. Amestoy, P. R. and Puglisi, C. 2002. An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Appl. 24, 553--569. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bai, Z., Day, D., Demmel, J., and Dongarra, J. 1996. Test matrix collection (non-Hermitian eigenvalue problems), Release 1. Tech. rep., University of Kentucky. ftp://ftp.ms.uky.edu/pub/misc/bai/Collection.Google ScholarGoogle Scholar
  6. Bai, Z., Day, D., Demmel, J., and Dongarra, J. Non-Hermitian eigenvalue problems. http://www.cs.ucdavis.edu/~bai/NEP. (Accessed 2008)Google ScholarGoogle Scholar
  7. Barnes, J. and Hut, P. 1986. A hierarchical o(n log n) force-calculation algorithm. Lett. Nature 324, 4, 446--449.Google ScholarGoogle ScholarCross RefCross Ref
  8. Batagelj, V. and Mrvar, A. Pajek networks. http://vlado.fmf.uni-lj.si/pub/networks/data. (Accessed 2008)Google ScholarGoogle Scholar
  9. Benzi, M. and Tuma, M. 1998. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19, 968--994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Berger, A. J., Mulvey, J. M., Rothberg, E., and Vanderbei, R. J. 1995. Solving multistage stochastic programs using tree dissection. Tech. rep. SOR-95-07, Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ.Google ScholarGoogle Scholar
  11. Boisvert, R. F., Pozo, R., Remington, K., Barrett, R., Dongarra, J., Miller, B., and Lipman, B. The Matrix Market. http://math.nist.gov/MatrixMarket. (Accessed 2008)Google ScholarGoogle Scholar
  12. Boisvert, R. F., Pozo, R., Remington, K., Barrett, R., and Dongarra, J. J. 1997. The Matrix Market: A web resource for test matrix collections. In Quality of Numerical Software, Assessment and Enhancement, R. F. Boisvert, Ed., Chapman & Hall, London, 125--137. http://math.nist.gov/MatrixMarket. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bomhof, C. W. and van der Vorst, H. A. 2000. A parallel linear system solver for circuit simulation problems. Numer. Linear Algebra Appl. 7, 7-8, 649--665.Google ScholarGoogle ScholarCross RefCross Ref
  14. Brainman, I. and Toledo, S. 2002. Nested-dissection orderings for sparse LU with partial pivoting. SIAM J. Matrix Anal. Appl. 23, 998--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Davis, T. A. 2005. Algorithm 849: A concise sparse Cholesky factorization package. ACM Trans. Math. Softw. 31, 4, 587--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Davis, T. A. and Hager, W. W. 2009. Dynamic supernodes in sparse cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35, 4, 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. 1999a. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 3, 720--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Demmel, J. W., Gilbert, J. R., and Li, X. S. 1999b. An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl. 20, 4, 915--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Duff, I. S. 1974. Pivot selection and row ordering in Givens reductions on sparse matrices. Comput. 13, 239--248.Google ScholarGoogle ScholarCross RefCross Ref
  21. Duff, I. S. 2001. YM11 documentation in HSL 2007. http://www.hsl.rl.ac.uk/specs/ym11.pdf.Google ScholarGoogle Scholar
  22. Duff, I. S., Grimes, R. G., and Lewis, J. G. 1989. Sparse matrix test problems. ACM Trans. Math. Softw. 15, 1, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Duff, I. S., Grimes, R. G., and Lewis, J. G. 1997. The Rutherford-Boeing sparse matrix collection. Tech. rep. RAL-TR-97-031, Rutherford Appleton Laboratory, UK.Google ScholarGoogle Scholar
  24. Duff, I. S. and Koster, J. 1999. The design and use of algorithms for permuting large entries to the diagonal of sparse matrices. SIAM J. Matrix Anal. Appl. 20, 4, 889--901. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Duff, I. S. and Pralet, S. 2005. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM J. Matrix Anal. Appl. 27, 2, 313--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Duff, I. S. and Reid, J. K. 1979. Performance evaluation of codes for sparse matrix problems. In Performance Evaluation of Numerical Software, L. D. Fosdick, Ed., North-Holland, New York, 121--135.Google ScholarGoogle Scholar
  27. Duff, I. S. and Reid, J. K. 1996. Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 22, 2, 227--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dumas, J.-G. Sparse integer matrices collection. http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html. (Accessed 2008)Google ScholarGoogle Scholar
  29. Feldmann, P., Melville, R., and Long, D. 1996. Efficient frequency domain analysis of large nonlinear analog circuits. In Proceedings of the IEEE Custom Integrated Circuits Conference. IEEE.Google ScholarGoogle Scholar
  30. Fruchterman, T. M. J. and Reingold, E. M. 1991. Graph drawing by force-directed placement. Softw. Pract. Exper. 21, 11, 1129--1164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Gay, D. NETLIB LP test problems. http://www.netlib.org/lp. (Accessed 2008)Google ScholarGoogle Scholar
  32. George, A., Heath, M. T., and Ng, E. 1983. A comparison of some methods for solving sparse linear least-squares problems. SIAM J. Sci. Statist. Comput. 4, 2, 177--187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. George, A. and Liu, J. W. H. 1981. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gilbert, J. R., Moler, C., and Schreiber, R. 1992. Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13, 1, 333--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Gilbert, J. R. and Peierls, T. 1988. Sparse partial pivoting in time proportional to arithmetic operations. SIAM J. Sci. Statist. Comput. 9, 862--874.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Gorter, F. and Kasky, A. 2010. The most intense moments the universe has ever known are the next 15 seconds. http://butdoesitfloat.com/496420/The-most-intense-moments-the-universe-has-ever-known-are-the-next-15.Google ScholarGoogle Scholar
  37. Gould, N., Hu, Y., and Scott, J. Gould/Hu/Scott collection. ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric. (Accessed 2008)Google ScholarGoogle Scholar
  38. Gupta, A. 1996. Fast and effective algorithms for graph partitioning and sparse matrix ordering. Tech. rep. RC 20496 (90799), IBM Research Division, Yorktown Heights, NY.Google ScholarGoogle Scholar
  39. Gupta, A. 2002. Improved symbolic and numerical factorization algorithms for unsymmetric sparse matrices. SIAM J. Matrix Anal. Appl. 24, 529--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Hachul, S. and Jünger, M. 2004. Drawing large graphs with a potential field based multilevel algorithm. In Proceedings of the 12th International Symposium on Graph Drawing (GD'04). Lecture Notes in Computer Science, vol. 3383. Springer, 285--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Higham, N. J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd Ed. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Hu, Y. F. 2005. Efficient and high-quality force-directed graph drawing. Mathematica J. 10, 37--71.Google ScholarGoogle Scholar
  43. Hu, Y. and Davis, T. 2011. Sparse matrices. The Harvard Advocate, 42--43.Google ScholarGoogle Scholar
  44. IEEE Spectrum editorial staff. 2010. The big picture: Pretty math problem. IEEE Spectrum 47, 10, 18--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Kamvar, S. Stanford-Berkeley web matrices. http://www.stanford.edu/~sdkamvar. (Accessed 2008)Google ScholarGoogle Scholar
  46. Kamvar, S. D., Haveliwala, T. H., and Golub, G. H. 2004. Adaptive methods for the computation of page rank. Linear Algebra Appl. 386, 51--65.Google ScholarGoogle ScholarCross RefCross Ref
  47. Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Keiter, E., Hutchinson, S. A., Hoekstra, R., Rankin, E., Russo, T., and Waters, L. 2003. Computational algorithms for device-circuit coupling. Tech. rep. SAND2003-0080, Sandia National Laboratories, Albequerque, NM.Google ScholarGoogle Scholar
  49. Kemelmacher, I. 2005. Indexing with unknown illumination and pose. In IEEE Conference on Computer Vision and Pattern Recognition. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Kiss, G. R., Armstrong, C., Milroy, R., and Piper, J. 1973. An associative thesaurus of English and its computer analysis. In The Computer and Literary Studies, A. Aitken, R. Bailey, and N. Hamilton-Smith, Eds., Edinburgh University Press, Edinburgh, UK.Google ScholarGoogle Scholar
  51. Labarre, S. 2010. Geeky science problems double as works of art. http://www.fastcodesign.com/1662136/geeky-science-problems-double-as-works-of-art.Google ScholarGoogle Scholar
  52. Leskovec, J., Chakrabarti, D., Kleinberg, J., and Faloutsos, C. 2005. Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In Knowledge Discovery in Databases (PKDD'05), A. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, Eds., Lecture Notes in Computer Science, vol. 3721. Springer, 133--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. McConnell, R. M. and Spinrad, J. P. 1999. Modular decomposition and transitive orientation. Discr. Math. 201, 189--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mészáros, C. Linear programming test set. http://www.sztaki.hu/~meszaros/public_ftp/lptestset. (Accessed 2008)Google ScholarGoogle Scholar
  55. Miller, J. J. H. and Wang, S. 1991. An exponentially fitted finite element method for a stationary convection-diffusion problem. In Computatioal Methods for Boundary and Interior Layers in Several Dimensions, J. J. H. Miller, Ed., Boole Press, Dublin, 120--137.Google ScholarGoogle Scholar
  56. Mittelmann, H. Linear programming test set. http://plato.asu.edu/ftp/lptestset. (Accessed 2008)Google ScholarGoogle Scholar
  57. Ng, E. G. and Peyton, B. W. 1993. Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14, 5, 1034--1056. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Page, L., Brin, S., Motwani, R., and Winograd, T. 1998. The PageRank citation ranking: Bringing order to the web. Tech. rep., Stanford Digital Library Tech. Project, Stanford, CA.Google ScholarGoogle Scholar
  59. Resende, M. G. C., Ramakrishnan, K. G., and Drezner, Z. 1995. Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43, 781--791.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Rudnyi, E. B. Oberwolfach model reduction benchmarks. http://www.imtek.uni-freiburg.de/simulation/benchmark. (Accessed 2008)Google ScholarGoogle Scholar
  61. Rudnyi, E. B., van Rietbergen, B., and Korvink, J. G. 2006. Model reduction for high dimensional micro-FE models. In Proceedings of the 3rd HPC-Europa Transnational Access Meeting.Google ScholarGoogle Scholar
  62. Ruesken, A. 2002. Approximation of the determinant of large sparse symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 23, 3, 799--818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2nd Ed. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Saad, Y. SPARSKIT collection. http://math.nist.gov/MatrixMarket/data/SPARSKIT. (Accessed 2008)Google ScholarGoogle Scholar
  65. Schenk, O. University of Basel collection. http://www.computational.unibas.ch/computer_science/scicomp/matrices. (Accessed 2008)Google ScholarGoogle Scholar
  66. Schulze, J. 2001. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods. BIT 41, 4, 800--841.Google ScholarGoogle ScholarCross RefCross Ref
  67. Taylor, A. and Higham, D. J. 2009. CONTEST: A controllable test matrix toolbox for MATLAB. ACM Trans. Math. Softw. 35, 4, 1--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Trefethen, L. N. 2002. A hundred-dollar, hundred-digit challenge. SIAM News 35, 1.Google ScholarGoogle Scholar
  69. van Heukelum, A., Barkema, G. T., and Bisseling, R. H. 2002. DNA electrophoresis studied with the cage model. J. Comput. Phys. 180, 313--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Walshaw, C. 2003. A multilevel algorithm for force-directed graph drawing. J. Graph Algor. Appl. 7, 253--285.Google ScholarGoogle ScholarCross RefCross Ref
  71. Watts, D. J. and Strogatz, S. H. 1998. Collective dynamics of small-world networks. Nature 393, 440--442.Google ScholarGoogle ScholarCross RefCross Ref
  72. Wilkinson, J. H. 1971. Linear algebra; part II: the algebraic eigenvalue problem. In Handbook for Automatic Computation, J. H. Wilkinson and C. Reinsch, Eds., Vol. 2. Springer.Google ScholarGoogle Scholar
  73. Zitney, S. E. 1992. Sparse matrix methods for chemical process separation calculations on supercomputers. In Proceedings of the Supercomputing'92 Conference. IEEE Computer Society Press. 414--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Zitney, S. E., Mallya, J., Davis, T. A., and Stadtherr, M. A. 1996. Multifrontal vs. frontal techniques for chemical process simulation on supercomputers. Comput. Chem. Engin. 20, 6/7, 641--646.Google ScholarGoogle Scholar

Index Terms

  1. The university of Florida sparse matrix collection

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Mathematical Software
            ACM Transactions on Mathematical Software  Volume 38, Issue 1
            November 2011
            144 pages
            ISSN:0098-3500
            EISSN:1557-7295
            DOI:10.1145/2049662
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 7 December 2011
            • Revised: 1 November 2010
            • Accepted: 1 November 2010
            • Received: 1 November 2008
            Published in toms Volume 38, Issue 1

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader