skip to main content
research-article

Joint shape segmentation with linear programming

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

We present an approach to segmenting shapes in a heterogenous shape database. Our approach segments the shapes jointly, utilizing features from multiple shapes to improve the segmentation of each. The approach is entirely unsupervised and is based on an integer quadratic programming formulation of the joint segmentation problem. The program optimizes over possible segmentations of individual shapes as well as over possible correspondences between segments from multiple shapes. The integer quadratic program is solved via a linear programming relaxation, using a block coordinate descent procedure that makes the optimization feasible for large databases. We evaluate the presented approach on the Princeton segmentation benchmark and show that joint shape segmentation significantly outperforms single-shape segmentation techniques.

References

  1. Anguelov, D., Srinivasan, P., Pang, H., Koller, D., Thrun, S., and Davis, J. 2005. The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In Proc. Neural Information Processing Systems (NIPS), The MIT Press.Google ScholarGoogle Scholar
  2. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chang, W., and Zwicker, M. 2008. Automatic registration for articulated shapes. In Proc. Symposium on Geometry Processing, Eurographics Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3d modeling. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3d mesh segmentation. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Golovinskiy, A., and Funkhouser, T. 2008. Randomized cuts for 3d mesh analysis. In Proc. SIGGRAPH Asia, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3d models. Computers & Graphics 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Grant, M., and Boyd, S. 2011. CVX: Matlab Software for Disciplined Convex Programming. http://www.stanford.edu/~boyd/cvx/.Google ScholarGoogle Scholar
  9. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3d mesh segmentation and labeling. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. In Proc. SIGGRAPH, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kraevoy, V., Julius, D., and Sheffer, A. 2007. Model composition from interchangeable components. In Proc. Pacific Graphics, IEEE Computer Society, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kumar, M. P., Kolmogorov, V., and Torr, P. H. S. 2009. An analysis of convex relaxations for MAP estimation of discrete MRFs. Journal of Machine Learning Research 10, 71--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Transactions on Graphics 21, 4, 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Rand, W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846--850.Google ScholarGoogle ScholarCross RefCross Ref
  16. Ren, X., and Malik, J. 2003. Learning a classification model for segmentation. In Proc. IEEE International Conference on Computer Vision. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Shamir, A. 2008. A survey on mesh segmentation techniques. Computer Graphics Forum 27, 1539--1556.Google ScholarGoogle ScholarCross RefCross Ref
  18. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. 2010. Contextual part analogies in 3d objects. International Journal of Computer Vision 89, 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Shi, J., and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8, 888--905. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Shotton, J., Winn, J., Rother, C., and Criminisi, A. 2009. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision 81, 2--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30 (December), 126:1--126:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Simari, P., Nowrouzezahrai, D., Kalogerakis, E., and Singh, K. 2009. Multi-objective shape segmentation and labeling. Computer Graphics Forum 28, 5, 1415--1425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sontag, D., and Jaakkola, T. 2009. Tree block coordinate descent for MAP in graphical models. Journal of Machine Learning Research - Proceedings Track 5, 544--551.Google ScholarGoogle Scholar
  25. Wainwright, M. J., Jaakkola, T., and Willsky, A. S. 2005. MAP estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51, 11, 3697--3717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. ACM Trans. Graph. 29 (December), 184:1--184:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Joint shape segmentation with linear programming

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader