skip to main content
research-article

Modular Radiance Transfer

Published:12 December 2011Publication History
Skip Abstract Section

Abstract

Many rendering algorithms willingly sacrifice accuracy, favoring plausible shading with high-performance. Modular Radiance Transfer (MRT) models coarse-scale, distant indirect lighting effects in scene geometry that scales from high-end GPUs to low-end mobile platforms. MRT eliminates scene-dependent precomputation by storing compact transport on simple shapes, akin to bounce cards used in film production. These shapes' modular transport can be instanced, warped and connected on-the-fly to yield approximate light transport in large scenes. We introduce a prior on incident lighting distributions and perform all computations in low-dimensional subspaces. An implicit lighting environment induced from the low-rank approximations is in turn used to model secondary effects, such as volumetric transport variation, higher-order irradiance, and transport through lightfields. MRT is a new approach to precomputed lighting that uses a novel low-dimensional subspace simulation of light transport to uniquely balance the need for high-performance and portable solutions, low memory usage, and fast authoring iteration.

Skip Supplemental Material Section

Supplemental Material

a178-loos.mp4

mp4

57.7 MB

References

  1. Ashdown, I. 2001. Eigenvector Radiosity. Master's thesis, Department of Computer Science, University of British Columbia.Google ScholarGoogle Scholar
  2. Bavoil, L., Sainz, M., and Dimitrov, R. 2008. Image-space horizon-based ambient occlusion. In SIGGRAPH talks, ACM, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, H. 2008. Lighting and Materials of Halo 3. In Game Developers Conference.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dachsbacher, C., and Stamminger, M. 2005. Reflective shadow maps. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dachsbacher, C., and Stamminger, M. 2006. Splatting indirect illumination. In ACM Symposium on Intearactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Greger, G., Shirley, P., Hubbard, P. M., and Greenberg, D. P. 1998. The irradiance volume. IEEE Computer Graphics & Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Guerrero, P., Jeschke, S., and Wimmer, M. 2008. Realtime indirect illumination and soft shadows in dynamic scenes using spherical lights. In Computer Graphics Forum, vol. 27, 2154--2168.Google ScholarGoogle ScholarCross RefCross Ref
  10. Habel, R., and Wimmer, M. 2010. Efficient irradiance normal mapping. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Iwasaki, K., Dobashi, Y., Yoshimoto, F., and Nishita, T. 2007. Precomputed Radiance Transfer for Dynamic Scenes Taking into Account Light Interreflection. Computer Graphics Forum, 35--44. Google ScholarGoogle ScholarCross RefCross Ref
  13. Kaplanyan, A., and Dachsbacher, C. 2010. Cascaded light propagation volumes for real-time indirect illumination. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Keller, A. 1997. Instant radiosity. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. 2006. Wavelet radiance transport for interactive indirect lighting. In Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Larsson, D., and Halen, H. 2009. The unique lighting of Mirror's Edge. In Game Developers Conference.Google ScholarGoogle Scholar
  18. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lehtinen, J. 2007. A framework for precomputed and captured light transport. ACM Trans. Graph. 26, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lewis, R. R., and Fournier, A. 1996. Light-driven global illumination with a wavelet representation of light transport. In Rendering Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Loos, B., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Run-time implementation of modular radiance transfer. In SIGGRAPH talks, ACM, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Martin, S., and Einarsson, P., 2010. A real-time radiosity architecture for video games. SIGGRAPH 2010 Course: Advances in Real-Time Rendering in 3D Graphics and Games.Google ScholarGoogle Scholar
  24. McTaggart, G. 2004. Half-Life 2 source shading. In Game Developers Conference.Google ScholarGoogle Scholar
  25. Meyer, M., and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mittring, M. 2007. Finding next gen: Cryengine 2. In SIGGRAPH courses, ACM, New York, 97--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nichols, G., and Wyman, C. 2009. Multiresolution splatting for indirect illumination. In ACM Symposium on Interactive 3D Graphics and Games. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nichols, G., Shopf, J., and Wyman, C. 2009. Hierarchical image-space radiosity for interactive global illumination. Computer Graphics Forum 28, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nowrouzezahrai, D., and Snyder, J. 2009. Fast global illumination of dynamic height fields. Computer Graphics Forum 28, 4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Parker, S., Martin, W., Sloan, P.-P. J., Shirley, P., Smits, B., and Hansen, C. 1999. Interactive ray tracing. In ACM Symposium on Interactive 3D Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ramamoorthi, R. 2009. Precomputation-based rendering. Foundations and Trends in Computer Graphics and Vision 3, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H., Peng, Q., and Guo, B. 2006. Realtime soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. Graph. 25, 3 (July), 977--986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. Journal of Graphics Tools. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sloan, P.-P., Govindaraju, N. K., Nowrouzezahrai, D., and Snyder, J. 2007. Image-based proxy accumulation for real-time soft global illumination. In Pacific Graphics, IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wang, R., Zhu, J., and Humphreys, G. 2007. Precomputed Radiance Transfer for Real-time Indirect Lighting using a Spectral Mesh Basis. Computer Graphics Forum, 13--21.Google ScholarGoogle Scholar
  38. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xu, H., Peng, Q.-S., and Liang, Y.-D. 1990. Accelerated radiosity method for complex environments. Computers and Graphics, 65--71.Google ScholarGoogle Scholar
  41. Zhukov, S., Inoes, A., and Kronin, G. 1998. An ambient light illumination model. In Rendering Techniques, Springer-Verlag.Google ScholarGoogle Scholar

Index Terms

  1. Modular Radiance Transfer

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 30, Issue 6
      December 2011
      678 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2070781
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 December 2011
      Published in tog Volume 30, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader