skip to main content
research-article

Bounded distortion mapping spaces for triangular meshes

Published:01 July 2012Publication History
Skip Abstract Section

Abstract

The problem of mapping triangular meshes into the plane is fundamental in geometric modeling, where planar deformations and surface parameterizations are two prominent examples. Current methods for triangular mesh mappings cannot, in general, control the worst case distortion of all triangles nor guarantee injectivity.

This paper introduces a constructive definition of generic convex spaces of piecewise linear mappings with guarantees on the maximal conformal distortion, as-well as local and global injectivity of their maps. It is shown how common geometric processing objective functionals can be restricted to these new spaces, rather than to the entire space of piecewise linear mappings, to provide a bounded distortion version of popular algorithms.

Skip Supplemental Material Section

Supplemental Material

tp213_12.mp4

mp4

19.9 MB

References

  1. Ahlfors, L. 1966. Lectures on quasiconformal mappings. University lecture series. American Mathematical Society.Google ScholarGoogle Scholar
  2. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of SIGGRAPH '00, ACM, New York, NY, USA, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amenta, A. B., Bern, M. W., and Eppstein, D. 1997. Optimal point placement for mesh smoothing. In Proc. 8th Symp. Discrete Algorithms, ACM and SIAM, 528--537. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Andersen, E. D., and Andersen, K. D. 1999. The MOSEK interior point optimization for linear programming: an implementation of the homogeneous algorithm. Kluwer Academic Publishers, 197--232.Google ScholarGoogle Scholar
  5. Aronov, B., Seidel, R., and Souvaine, D. 1993. On compatible triangulations of simple polygons. Comput. Geom. Theory Appl. 3 (June), 27--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ben-chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27.Google ScholarGoogle Scholar
  7. Bern, M. W., and Eppstein, D. 1995. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, D.-Z. Du and F. K.-M. Hwang, Eds., second ed., no. 4 in Lecture Notes Series on Computing. World Scientific, 47--123.Google ScholarGoogle Scholar
  8. Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11 (June), 567--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brenner, S., and Scott, L. 2008. The mathematical theory of finite element methods. Texts in applied mathematics. Springer.Google ScholarGoogle Scholar
  10. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29 (July), 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Pa-rameterizations of Surface Meshes. Computer Graphics Forum 21.Google ScholarGoogle Scholar
  12. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH '95, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Floater, M. S., and Hormann, K. 2005. Surface Parameterization: a Tutorial and Survey. Advances in Multiresolution for Geometric Modelling, 157--186.Google ScholarGoogle Scholar
  14. Floater, M. S. 2003. One-to-one piecewise linear mappings over triangulations. Mathematics of Computation 72, 685--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gaidashev, D., and Khmelev, D. 2008. On numerical algorithms for the solution of a beltrami equation. SIAM J. Numer. Anal. 46 (May), 2238--2253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gortler, S. J., Gotsman, C., and Thurston, D. 2006. Discrete one-forms on meshes and applications to 3d mesh parameterization. Comput. Aided Geom. Des. 23, 2 (Feb.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hormann, K., and Greiner, G. 2000. MIPS: An efficient global parametrization method. In Curve and Surface Design: Saint-Malo 1999, P.-J. Laurent, P. Sablonnière, and L. L. Schumaker, Eds., Innovations in Applied Mathematics. Vanderbilt University Press, Nashville, TN, 153--162.Google ScholarGoogle Scholar
  18. Igarashi, T., Moscovich, T., and Hughes, F. J. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph 24, 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Imayoshi, Y., and Taniguchi, M. 1992. An introduction to Teichmüller spaces. Springer-Verlag.Google ScholarGoogle Scholar
  20. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 30, 4, 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jin, M., Kim, J., and Gu, X. D. 2007. Discrete surface ricci flow: Theory and applications. In In IMA Conference on the Mathematics of Surfaces, 209--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Johnen, A., Remacle, J.-F., and Geuzaine, C. 2012. Geometrical validity of curvilinear finite elements. In Proceedings of the 20th International Meshing Roundtable. 255--271.Google ScholarGoogle Scholar
  23. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25 (April), 412--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Levy, B., Petitjean, S., Ray, N., and Maillo t, J. 2002. Least squares conformal maps for automatic texture atlas generation. In ACM SIGGRAPH conference proceedings, ACM, Ed. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lipman, Y., Kim, V., and Funkhouser, T. 2012. Simple formulas for quasiconformal plane deformations. ACM Transactions on Graphics, accepted for publication. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Proceedings of the Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '08, 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Maillot, J., Yahia, H., and Verroust, A. 1993. Interactive texture mapping. In SIGGRAPH '93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ruppert, J. 1995. A delaunay refinement algorithm for quality 2-dimensional mesh generation. In Selected papers from the fourth annual ACM SIAM symposium on Discrete algorithms, Academic Press, Inc., Orlando, FL, USA, 548--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sander, P. V., Snyder, J., Gortler, S. J., and Hoppe, H. 2001. Texture mapping progressive meshes. In Proceeding of SIGGRAPH '01, ACM, New York, NY, USA, 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25 (July), 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogomyakov, A. 2005. Abf++: fast and robust angle based flattening. ACM Trans. Graph. 24 (April), 311--330. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2 (January), 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Shewchuk, J. R. 1996. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering, M. C. Lin and D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer Science. Springer-Verlag, May, 203--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Solomon, J., Ben-Chen, M., Butscher, A., and Guibas, L. 2011. As-Killing-As-Possible Vector Fields for Planar Deformation. Computer Graphics Forum 30, 5, 1543--1552.Google ScholarGoogle ScholarCross RefCross Ref
  37. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the fifth Eurographics symposium on Geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proceedings of IEEE Visualization, IEEE Computer Society, 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1--77:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Stephenson, K. 2005. Introduction to circle packing: the theory of discrete analytic functions. Cambridge University Press.Google ScholarGoogle Scholar
  41. Tutte, W. T. 1963. How to Draw a Graph. Proceedings of the London Mathematical Society s3--13, 1, 743--767.Google ScholarGoogle ScholarCross RefCross Ref
  42. Weber, O., and Gotsman, C. 2010. Controllable conformal maps for shape deformation and interpolation. ACM Trans. Graph. 29, 78:1--78:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Zeng, W., and Gu, X. D. 2011. Registration for 3d surfaces with large deformations using quasi-conformal curvature flow. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, 2457--2464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zeng, W., Luo, F., Yau, S. T., and Gu, X. D. 2009. Surface quasi-conformal mapping by solving beltrami equations. In Proceedings of the 13th IMA International Conference on Mathematics of Surfaces XIII, Springer-Verlag, Berlin, Heidelberg, 391--408. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents

    Copyright © 2012 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 1 July 2012
    Published in tog Volume 31, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader