skip to main content
10.1145/2213836.2213888acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Efficient processing of distance queries in large graphs: a vertex cover approach

Authors Info & Claims
Published:20 May 2012Publication History

ABSTRACT

We propose a novel disk-based index for processing single-source shortest path or distance queries. The index is useful in a wide range of important applications (e.g., network analysis, routing planning, etc.). Our index is a tree-structured index constructed based on the concept of vertex cover. We propose an I/O-efficient algorithm to construct the index when the input graph is too large to fit in main memory. We give detailed analysis of I/O and CPU complexity for both index construction and query processing, and verify the efficiency of our index for query processing in massive real-world graphs.

References

  1. I. Abraham, A. Fiat, A. V. Goldberg, and R. F. F. Werneck. Highway dimension, shortest paths, and provably efficient algorithms. In SODA, pages 782--793, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems. Commun. ACM, 31(9):1116--1127, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167--1181, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Ajwani, R. Dementiev, and U. Meyer. A computational study of external-memory BFS algorithms. In SODA, pages 601--610, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Ajwani, U. Meyer, and V. Osipov. Improved external memory bfs implementation. In ALENEX, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. L. Buchsbaum, M. H. Goldwasser, S. Venkatasubramanian, and J. Westbrook. On external memory graph traversal. In SODA, pages 859--860, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques in massive networks by h*-graph. In SIGMOD Conference, pages 447--458, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. R. Coffman and S. E. Marcus. Dynamic classification of groups through social network analysis and HMMs. In IEEE Aerospace Conference, pages 3197--3205, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  9. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269?71, 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2):248--264, 1972. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Eppstein and J. Wang. Fast approximation of centrality. In SODA, pages 228--229, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In SIGCOMM, pages 251--262, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Ford and D. R. Fulkerson. Maximum flow through a network. Canadian Journal of Mathematics, 8(3):399--404, 1956.Google ScholarGoogle ScholarCross RefCross Ref
  15. L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35?1, 1977.Google ScholarGoogle ScholarCross RefCross Ref
  16. J. E. Hopcroft and R. M. Karp. An $n^5/2$ algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225--231, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  17. V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving graph problems in external memory. In In Proc. IEEE Symp. on Parallel and Distributed Processing, pages 169--177, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear I/O. In ESA, pages 723--735, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. U. Meyer. Via detours to I/O-efficient shortest paths. In Efficient Algorithms, pages 219--232, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. U. Meyer and V. Osipov. Design and implementation of a practical i/o-efficient shortest paths algorithm. In ALENEX, pages 85--96, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  21. U. Meyer and N. Zeh. I/O-efficient undirected shortest paths. In ESA, pages 434--445. Springer-Verlag, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  22. U. Meyer and N. Zeh. I/O-efficient undirected shortest paths with unbounded edge lengths. In ESA, pages 540--551, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Micali and V. V. Vazirani. An $O(|E| \sqrt|V|)$ algoithm for finding maximum matching in general graphs. In FOCS, pages 17--27, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Munagala and A. G. Ranade. I/o-complexity of graph algorithms. In SODA, pages 687--694, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Najork and J. L. Wiener. Breadth-first crawling yields high-quality pages. In WWW, pages 114--118, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Shimbel. Structural parameters of communication networks. Mathematical Biophysics, 15:501?07, 1953.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. E. Thomason, T. R. Coffman, and S. E. Marcus. Sensitivity of social network analysis metrics to observation noise. In IEEE Aerospace Conference, pages 3206--3216, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. S. Turner. Approximation algorithms for the shortest common superstring problem. Information and Computation, 83(1):1 -- 20, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. T. W. Valente and R. K. Foreman. Integration and radiality: Measuring the extent of an individual's connectedness and reachability in a network. Social Networks, 20(1):89--105, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  30. F. Wei. TEDI: efficient shortest path query answering on graphs. In SIGMOD Conference, pages 99--110, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Y. Xiao, W. Wu, J. Pei, W. Wang, and Z. He. Efficiently indexing shortest paths by exploiting symmetry in graphs. In EDBT, pages 493--504, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient processing of distance queries in large graphs: a vertex cover approach

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGMOD '12: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data
          May 2012
          886 pages
          ISBN:9781450312479
          DOI:10.1145/2213836

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 20 May 2012

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SIGMOD '12 Paper Acceptance Rate48of289submissions,17%Overall Acceptance Rate785of4,003submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader