skip to main content
10.1145/2213977.2214044acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Making polynomials robust to noise

Published:19 May 2012Publication History

ABSTRACT

A basic question in any computational model is how to reliably compute a given function when the inputs or intermediate computations are subject to noise at a constant rate. Ideally, one would like to use at most a constant factor more resources compared to the noise-free case. This question has been studied for decision trees, circuits, automata, data structures, broadcast networks, communication protocols, and other models.

Buhrman et al. (2003) posed the noisy computation problem for real polynomials. We give a complete solution to this problem. For any polynomial p:{0,1}n->[-1,1], we construct a polynomial probust:Rn->R of degree O(deg p+log(1/ε)) that epsilon-approximates p and is robust to noise in the inputs: |p(x)-probust(x+δ)|<ε for all x∈ 0,1}n and all delta∈[-1/3,1/3]n. This result is optimal with respect to all parameters. We construct probust explicitly for each p. Previously, it was open to give such a construction even for p=x1 ⊕ x2 ⊕ ... ⊕ xn (Buhrman et al., 2003). The proof contributes a technique of independent interest, which allows one to force partial cancellation of error terms in a polynomial.

Skip Supplemental Material Section

Supplemental Material

stoc_8b_3.mp4

mp4

138.1 MB

References

  1. S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Computing, 1(1):1--28, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  2. S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. J. ACM, 51(4):595--605, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Ambainis. Polynomial degree vs. quantum query complexity. J. Comput. Syst. Sci., 72(2):220--238, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek, and S. Zhang. Any AND-OR formula of size N can be evaluated in time N1/2 o(1) on a quantum computer. In Proceedings of the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 363--372, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Aspnes, R. Beigel, M. L. Furst, and S. Rudich. The expressive power of voting polynomials. Combinatorica, 14(2):135--148, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  6. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. J. ACM, 48(4):778--797, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Beame, T. Huynh, and T. Pitassi. Hardness amplification in proof complexity. In Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing (STOC), pages 87--96, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Beame and D.-T. Huynh-Ngoc. Multiparty communication complexity and threshold circuit complexity of AC0. In Proceedings of the Fiftieth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 53--62, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Beigel, N. Reingold, and D. A. Spielman. ¶P is closed under intersection. J. Comput. Syst. Sci., 50(2):191--202, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Braverman and A. Rao. Towards coding for maximum errors in interactive communication. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing (STOC), pages 159--166, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical communication and computation. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC), pages 63--68, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka. Bounds for small-error and zero-error quantum algorithms. In Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 358--368, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf. Robust polynomials and quantum algorithms. Theory Comput. Syst., 40(4):379--395, 2007. Preliminary version at http://arxiv.org/abs/quant-ph/0309220v1, September 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. Buhrman, N. K. Vereshchagin, and R. de Wolf. On computation and communication with small bias. In Proceedings of the Twenty-Second Annual IEEE Conference on Computational Complexity (CCC), pages 24--32, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Buhrman and R. de Wolf. Communication complexity lower bounds by polynomials. In Proceedings of the Sixteenth Annual IEEE Conference on Computational Complexity (CCC), pages 120--130, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. W. Cheney. Introduction to Approximation Theory. Chelsea Publishing, New York, 2nd edition, 1982.Google ScholarGoogle Scholar
  17. C. Dutta, Y. Kanoria, D. Manjunath, and J. Radhakrishnan. A tight lower bound for parity in noisy communication networks. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1056--1065, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Dutta and J. Radhakrishnan. Lower bounds for noisy wireless networks using sampling algorithms. In Proceedings of the Forty-Ninth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 394--402, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Eremenko and P. Yuditskii. Uniform approximation of sgn(x) by polynomials and entire functions. J. d'Analyse Mathématique, 101:313--324, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  20. W. S. Evans and N. Pippenger. Average-case lower bounds for noisy Boolean decision trees. SIAM J. Comput., 28(2):433--446, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. S. Evans and L. J. Schulman. Signal propagation and noisy circuits. IEEE Transactions on Information Theory, 45(7):2367--2373, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. E. Farhi, J. Goldstone, and S. Gutmann. A quantum algorithm for the Hamiltonian NAND tree. Theory of Computing, 4(1):169--190, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  23. U. Feige. On the complexity of finite random functions. Inf. Process. Lett., 44(6):295--296, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. U. Feige and J. Kilian. Finding OR in a noisy broadcast network. Inf. Process. Lett., 73(1--2):69--75, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM J. Comput., 23(5):1001--1018, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. P. Gács and A. Gál. Lower bounds for the complexity of reliable Boolean circuits with noisy gates. IEEE Transactions on Information Theory, 40(2):579--583, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. G. Gallager. Finding parity in a simple broadcast network. IEEE Transactions on Information Theory, 34(2):176--180, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Gelles, A. Moitra, and A. Sahai. Efficient and explicit coding for interactive communication. In Proceedings of the Fifty-Second Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2011. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. Goyal, G. Kindler, and M. E. Saks. Lower bounds for the noisy broadcast problem. SIAM J. Comput., 37(6):1806--1841, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In Proc. of the 30th International Colloquium on Automata, Languages, and Programming (ICALP), pages 291--299, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. J. Kahn, N. Linial, and A. Samorodnitsky. Inclusion-exclusion: Exact and approximate. Combinatorica, 16(4):465--477, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  32. A. T. Kalai, A. R. Klivans, Y. Mansour, and R. A. Servedio. Agnostically learning halfspaces. SIAM J. Comput., 37(6):1777--1805, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Klauck, R. Spalek, and R. de Wolf. Quantum and classical strong direct product theorems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472--1493, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. J. Kleitman, F. T. Leighton, and Y. Ma. On the design of reliable Boolean circuits that contain partially unreliable gates. J. Comput. Syst. Sci., 55(3):385--401, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. R. Klivans and R. A. Servedio. Learning DNF in time 2~O(n1/3). J. Comput. Syst. Sci., 68(2):303--318, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. R. Klivans and A. A. Sherstov. Unconditional lower bounds for learning intersections of halfspaces. Machine Learning, 69(2--3):97--114, 2007. Preliminary version in Proceedings of the Nineteenth Annual Conference on Computational Learning Theory (COLT), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. R. Klivans and A. A. Sherstov. Lower bounds for agnostic learning via approximate rank. Computational Complexity, 19(4):581--604, 2010. Preliminary version in Proceedings of the Twentieth Annual Conference on Computational Learning Theory (COLT), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Krause and P. Pudlák. On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci., 174(1--2):137--156, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. Krause and P. Pudlák. Computing Boolean functions by polynomials and threshold circuits. Comput. Complex., 7(4):346--370, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. E. Kushilevitz and Y. Mansour. Computation in noisy radio networks. SIAM J. Discrete Math., 19(1):96--108, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Linial and N. Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349--365, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  42. M. L. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge, Mass., 1969. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. I. Newman. Computing in fault tolerance broadcast networks. In Proceedings of the Nineteenth Annual IEEE Conference on Computational Complexity (CCC), pages 113--122, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational Complexity, 4:301--313, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. Paturi and M. E. Saks. Approximating threshold circuits by rational functions. Inf. Comput., 112(2):257--272, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. N. Pippenger. On networks of noisy gates. In Proceedings of the Twenty-Sixth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 30--38, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. A. A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya of the Russian Academy of Sciences, Mathematics, 67:145--159, 2002.Google ScholarGoogle Scholar
  48. A. A. Razborov and A. A. Sherstov. The sign-rank of $\AC^0$. SIAM J. Comput., 39(5):1833--1855, 2010. Preliminary version in Proceedings of the Forty-Ninth Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. R. Reischuk and B. Schmeltz. Reliable computation with noisy circuits and decision trees--a general nłog n lower bound. In Proceedings of the Thirty-Second Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 602--611, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. T. J. Rivlin. An Introduction to the Approximation of Functions. Dover Publications, New York, 1981.Google ScholarGoogle Scholar
  51. L. J. Schulman. Communication on noisy channels: A coding theorem for computation. In Proceedings of the Thirty-Third Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 724--733, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. L. J. Schulman. Coding for interactive communication. IEEE Transactions on Information Theory, 42(6):1745--1756, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. A. Sherstov. Communication lower bounds using dual polynomials. Bulletin of the EATCS, 95:59--93, 2008.Google ScholarGoogle Scholar
  54. A. A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity, 18(2):219--247, 2009. Preliminary version in Proceedings of the Twenty-Third Annual IEEE Conference on Computational Complexity (CCC), 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. A. A. Sherstov. The intersection of two halfspaces has high threshold degree. In Proceedings of the Fiftieth Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 343--362, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. A. Sherstov. Separating AC0 from depth-2 majority circuits. SIAM J. Comput., 38(6):2113--2129, 2009. Preliminary version in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing (STOC), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. A. A. Sherstov. Optimal bounds for sign-representing the intersection of two halfspaces by polynomials. In Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing (STOC), pages 523--532, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. K.-Y. Siu, V. P. Roychowdhury, and T. Kailath. Rational approximation techniques for analysis of neural networks. IEEE Transactions on Information Theory, 40(2):455--466, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. D. A. Spielman. Highly fault-tolerant parallel computation. In Proceedings of the Thirty-Seventh Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 154--163, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. Szegedy and X. Chen. Computing Boolean functions from multiple faulty copies of input bits. Theor. Comput. Sci., 321(1):149--170, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. J. Tarui and T. Tsukiji. Learning DNF by approximating inclusion-exclusion formulae. In Proceedings of the Fourteenth Annual IEEE Conference on Computational Complexity (CCC), pages 215--221, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. R. de Wolf. A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions. Quantum Information and Computation, 8(10):943--950, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Making polynomials robust to noise

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '12: Proceedings of the forty-fourth annual ACM symposium on Theory of computing
      May 2012
      1310 pages
      ISBN:9781450312455
      DOI:10.1145/2213977

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 May 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader