skip to main content
10.1145/2304576.2304609acmconferencesArticle/Chapter ViewAbstractPublication PagesicsConference Proceedingsconference-collections
keynote

Blue Gene/Q: design for sustained multi-petaflop computing

Published:25 June 2012Publication History

ABSTRACT

The Blue Gene/Q system represents the third generation of optimized high-performance computing Blue Gene solution servers and provides a platform for continued growth in HPC performance and capability. Blue Gene/Q started with a new design of the hardware platform, while retaining and significantly expanding an established, trusted and successful software environment.

To deliver a system that enables users to fully exploit the promise of high-performance computing for both traditional HPC applications and new commercial application areas, the Blue Gene/Q system architecture combines hardware and software innovations to overcome traditional bottlenecks, most famously the memory and power walls which have become emblematic of modern computing systems. At the same time, to deliver a platform for sustainable petascale computing, and beyond to exascale, we had to address a new set of "walls" with the many innovations described below: a scalability wall, a communication wall, and a reliability wall.

The new Blue Gene/Q system increases overall system performance with a new node architecture: Each node offers more thread-level-parallelism with a coherent SMP node consisting of eighteen 64-bit PowerPC cores with 4-way simultaneous multithreading. Each core provides for better exploitation of data-level parallelism with a new 4-way quad-vector processing unit (QPU). The memory subsystem integrates memory speculation support which can be used to implement both Transactional Memory and Speculative Execution programming models.

The compute nodes are connected in a five dimensional torus configuration using 10 point-to-point links, and a total network bandwidth of 44 GB/s per node. The on-chip messaging unit provides an optimized interface between the network routing logic and the memory subsystem, with enough bandwidth to keep all the links busy. It also offloads communication protocol processing by implementing collective broadcast and reduction operations, including integer and floating point sum, min and max.

Built on the Blue Gene hardware design is an efficient software stack that builds on several generations of Blue Gene software interfaces, while extending these capabilities and adding new functions to support new hardware capabilities. The hardware functions were designed with a focus on providing efficient primitives upon which to build the rich software environment.

To ensure reliable operation of a petascale system, reliability has to be a pervasive design consideration. At the architecture level, new QPX store-and-indicate instructions support the detection of programming errors. To ensure reliable operation in the presence of transient faults, we conducted exhaustive single event upset simulations based on fault injection into the simulated design. The operating system was structured to use firmware in a small on-chip boot eDRAM to avoid silent system hangs.

Together, the hardware and software innovations pioneered in Blue Gene/Q give application developers a platform and framework to develop and deploy sustained petascale computing applications. These petascale applications will allow its users to make new scientific discoveries and gain new business insights, which will be the true measure of the success of the new Blue Gene/Q systems.

Index Terms

  1. Blue Gene/Q: design for sustained multi-petaflop computing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader