skip to main content
10.1145/2339530.2339602acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Aggregating web offers to determine product prices

Published:12 August 2012Publication History

ABSTRACT

Historical prices are important information that can help consumers decide whether the time is right to buy a product. They provide both a context to the users, and facilitate the use of prediction algorithms for forecasting future prices. To produce a representative price history, one needs to consider all offers for the product. However, matching offers to a product is a challenging problem, and mismatches could lead to glaring errors in price history. We propose a principled approach to filter out erroneous matches based on a probabilistic model of prices. We give an efficient algorithm for performing inference that takes advantage of the structure of the problem. We evaluate our results empirically using merchant offers collected from a search engine, and measure the proximity of the price history generated by our approach to the true price history. Our method outperforms alternatives based on robust statistics both in tracking the true price levels and the true price trends.

Skip Supplemental Material Section

Supplemental Material

306_m_talk_13.mp4

mp4

151.3 MB

References

  1. R. Agrawal, S. Ieong, and R. Velu. Ameliorating buyers' remorse. In Proc. KDD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Agrawal, S. Ieong, and R. Velu. Timing when to buy. In Proc. CIKM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom. Swoosh: a generic approach to entity resolution. The VLDB Journal, 18(1):255--276, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. Adaptive name matching in information integration. IEEE Intel. Sys., 18(5):16--23, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal Of The Royal Statistical Society, Series B, 39(1):1--38, 1977.Google ScholarGoogle Scholar
  7. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey. IEEE Trans. on Knowl. and Data Eng., 19(1):1--16, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical Association, 64(328):1183--1210, 1969.Google ScholarGoogle ScholarCross RefCross Ref
  9. Z. Gharamani and G. E. Hinton. Parameter estimation for linear dynamical systems. Technical report, University of Toronto, 1996.Google ScholarGoogle Scholar
  10. Z. Gharamani and G. E. Hinton. Variational learning for switching state-space models. Neural Computation, 12(4):963--996, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-gaussian bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, 140(2):107--113, 1993.Google ScholarGoogle Scholar
  12. P. J. Huber. Robust Statistics. Wiley, 1981.Google ScholarGoogle Scholar
  13. M. Isard and A. Blake. CONDENSATION - conditional density propagation for visual tracking. Int. Journal of Computer Vision, 29(1):5--18, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35--45, 1960.Google ScholarGoogle Scholar
  15. K. Kanazawa, D. Koller, and S. Russel. Stochastic simulation algorithms for dynamic probabilistic networks. In Proc. UAI, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Kannan, I. E. Givoni, R. Agrawal, and A. Fuxman. Matching unstructured product offers to structured product specifications. In Proc. KDD, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Michelson and C. Knoblock. Creating relational data from unstructured and ungrammatical data sources. Journal of Artificial Intelligence Research, 31:543--590, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Mitkov. Anaphora Resolution. Longman, 2002.Google ScholarGoogle Scholar
  19. H. B. Newcombe, M. J. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital records. Science, 130:954--959, October 1959.Google ScholarGoogle ScholarCross RefCross Ref
  20. P. Ravikumar and W. W. Cohen. A hierarchical graphical model for record linkage. In UAI, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Roweis and Z. Ghahramani. A unifying review of linear gaussian models. Neural Computation, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning. In KDD, pages 269--278, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Singh, K. Schultz, and A. McCallum. Bi-directional joint inference for entity resolution and segmentation using imperatively-defined factor graphs. In ECML-PKDD, pages 414--429, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. Sastry. Kalman filtering with intermittent observations. IEEE Trans. on Automatic Control, 49:1453--1464, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  25. W. E. Winkler. Overview of record linkage and current research directions. Technical report, Bureau of the Census, 2006.Google ScholarGoogle Scholar
  26. P. Zarchan and H. Musoff. Fundamentals of Kalman Filtering: A Practical Approach. AIAA, 2nd ed., 2005.Google ScholarGoogle Scholar
  27. J. Zhong and S. Sclaroff. Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In Proc. ICCV, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Aggregating web offers to determine product prices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '12: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining
        August 2012
        1616 pages
        ISBN:9781450314626
        DOI:10.1145/2339530

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 August 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader