skip to main content
10.1145/2348283.2348385acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Robust ranking models via risk-sensitive optimization

Published:12 August 2012Publication History

ABSTRACT

Many techniques for improving search result quality have been proposed. Typically, these techniques increase average effectiveness by devising advanced ranking features and/or by developing sophisticated learning to rank algorithms. However, while these approaches typically improve average performance of search results relative to simple baselines, they often ignore the important issue of robustness. That is, although achieving an average gain overall, the new models often hurt performance on many queries. This limits their application in real-world retrieval scenarios. Given that robustness is an important measure that can negatively impact user satisfaction, we present a unified framework for jointly optimizing effectiveness and robustness. We propose an objective that captures the tradeoff between these two competing measures and demonstrate how we can jointly optimize for these two measures in a principled learning framework. Experiments indicate that ranking models learned this way significantly decreased the worst ranking failures while maintaining strong average effectiveness on par with current state-of-the-art models.

References

  1. P. N. Bennett, F. Radlinski, R. W. White, and E. Yilmaz. Inferring and using location metadata to personalize web search. In SIGIR, pages 135--144, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Bhattacharjee and A. Goel. Algorithms and incentives for robust ranking. In SODA 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Bian, X. Li, F. Li, Z. Zheng, and H. Zha. Ranking specialization for web search: a divide-and-conquer approach by using topical ranksvm. In WWW, pages 131--140, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Bian, T.-Y. Liu, T. Qin, and H. Zha. Ranking with query-dependent loss for web search. In WSDM, pages 141--150, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. In ICML, pages 89--96, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. J. C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview. Technical report, Microsoft Research, 2010.Google ScholarGoogle Scholar
  7. C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to Rank with Nonsmooth Cost Functions. In NIPS, pages 193--200. MIT Press, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Büttcher, C. L. A. Clarke, and B. Lushman. Term proximity scoring for ad-hoc retrieval on very large text collections. In SIGIR, pages 621--622, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. Journal of Machine Learning Research - Proceedings Track, 14:1--24, 2011.Google ScholarGoogle Scholar
  10. K. Collins-Thompson. Reducing the risk of query expansion via robust constrained optimization. In CIKM 2009, pages 837--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. K. Collins-Thompson, P. N. Bennett, R. W. White, S. de la Chica, and D. Sontag. Personalizing web search results by reading level. In CIKM, pages 403--412, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance. In SIGIR, pages 299--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Dai, M. Shokouhi, and B. D. Davison. Learning to rank for freshness and relevance. In SIGIR, pages 95--104, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. Donmez, K. M. Svore, and C. J. C. Burges. On the local optimality of lambdarank. In SIGIR, pages 460--467, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Z. Dou, R. Song, and J.-R. Wen. A large-scale evaluation and analysis of personalized search strategies. In WWW, pages 581--590, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. N. Efthimiadis. Chapter: Query expansion. Annual Review of Information Science and Technology, 31:121--187, 1996.Google ScholarGoogle Scholar
  17. J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189--1232, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  18. X. Geng, T.-Y. Liu, T. Qin, A. Arnold, H. Li, and H.-Y. Shum. Query dependent ranking using k-nearest neighbor. In SIGIR, pages 115--122, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Gey. Inferring probability of relevance using the method of logistic regression. In Proc. 17th SIGIR Conference, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Q. Guo, R. W. White, S. Dumais, J. Wang, and B. Anderson. Predicting query performance using query, result, and user interaction features. In RIAO, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query performance predictors. In CIKM, pages 1419--1420, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Kang, X. Wang, J. Chen, C. Liao, Y. Chang, B. L. Tseng, and Z. Zheng. Learning to re-rank web search results with multiple pairwise features. In WSDM'11, pages 735--744, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and C. Newell. Explaining the user experience of recommender systems. J. of User Modeling and User-Adapted Interaction (UMUAI), 22, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Li, X. Li, S. Ji, and Z. Zheng. Comparing both relevance and robustness in selection of web ranking functions. In SIGIR '09, pages 648--649, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 3(3), 2009.Google ScholarGoogle Scholar
  26. Y. Lv, C. Zhai, and W. Chen. A boosting approach to improving pseudo-relevance feedback. In SIGIR, pages 165--174, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Metzler and W. B. Croft. A Markov Random Field model for term dependencies. In Proc. 28th SIGIR Conference, pages 472--479, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proc. 21st SIGIR Conference, pages 275--281, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3. In Proc. 3rd TREC Conference, pages 109--126, 1994.Google ScholarGoogle Scholar
  30. R. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John Wiley, 1986.Google ScholarGoogle Scholar
  31. K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to rank with multiple objective functions. In WWW, pages 367--376, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. T. Tao and C. Zhai. An exploration of proximity measures in information retrieval. In Proc. 30th SIGIR Conference, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. Teevan, S. T. Dumais, and E. Horvitz. Potential for personalization. ACM TOCHI, 17(1), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. E. M. Voorhees. The trec robust retrieval track. SIGIR Forum, 39(1):11--20, June 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Wang and J. Zhu. Portfolio theory of information retrieval. In SIGIR. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. R. W. White, P. N. Bennett, and S. T. Dumais. Predicting short-term interests using activity-based search context. In CIKM, pages 1009--1018, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 13:254--270, June 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Y. Zhou and W. B. Croft. Query performance prediction in web search environments. In Research and Development in Information Retrieval, pages 543--550, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Zhu, J. Wang, I. J. Cox, and M. J. Taylor. Risky business: modeling and exploiting uncertainty in information retrieval. In SIGIR. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust ranking models via risk-sensitive optimization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SIGIR '12: Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval
      August 2012
      1236 pages
      ISBN:9781450314725
      DOI:10.1145/2348283

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 August 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate792of3,983submissions,20%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader