skip to main content
10.1145/2388676.2388680acmconferencesArticle/Chapter ViewAbstractPublication Pagesicmi-mlmiConference Proceedingsconference-collections
research-article

Two people walk into a bar: dynamic multi-party social interaction with a robot agent

Published:22 October 2012Publication History

ABSTRACT

We introduce a humanoid robot bartender that is capable of dealing with multiple customers in a dynamic, multi-party social setting. The robot system incorporates state-of-the-art components for computer vision, linguistic processing, state management, high-level reasoning, and robot control. In a user evaluation, 31 participants interacted with the bartender in a range of social situations. Most customers successfully obtained a drink from the bartender in all scenarios, and the factors that had the greatest impact on subjective satisfaction were task success and dialogue efficiency.

Skip Supplemental Material Section

Supplemental Material

fp131.mp4

mp4

9.8 MB

References

  1. A. Argyros and M. Lourakis. 3D tracking of skin-colored regions by a moving stereoscopic observer. Applied Optics, 43 (2): 366--378, Jan. 2004.Google ScholarGoogle ScholarCross RefCross Ref
  2. W. Bainbridge, J. Hart, E. Kim, and B. Scassellati. The benefits of interactions with physically present robots over video-displayed agents. International Journal of Social Robotics, 3: 41--52, 2011. 10.1007/s12369-010-0082-7.Google ScholarGoogle ScholarCross RefCross Ref
  3. H. Baltzakis and A. Argyros. Propagation of pixel hypotheses for multiple objects tracking. In Proceedings of ISVC 2009, Nov. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. Baltzakis, M. Pateraki, and P. Trahanias. Visual tracking of hands, faces and facial features of multiple persons. Machine Vision and Applications, pages 1--17, 2012. 10.1007/s00138-012-0409-5.Google ScholarGoogle ScholarCross RefCross Ref
  5. C. Bartneck, D. Kulić, E. Croft, and S. Zoghbi. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1: 71--81, 2009. 10.1007/s12369-008-0001-3.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Bohus and E. Horvitz. Dialog in the open world: platform and applications. In Proceedings of ICMI-MLMI 2009, pages 31--38, Nov. 2009. 10.1145/1647314.1647323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Breazeal. Socially intelligent robots. interactions, 12 (2): 19--22, 2005. 10.1145/1052438.1052455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Castellano, I. Leite, A. Pereira, C. Martinho, A. Paiva, and P. W. McOwan. Affect recognition for interactive companions: challenges and design in real world scenarios. Journal on Multimodal User Interfaces, 3 (1): 89--98, 2010. 10.1007/s12193-009-0033-5.Google ScholarGoogle ScholarCross RefCross Ref
  9. K. Dautenhahn. Socially intelligent robots: dimensions of human-robot interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 362 (1480): 679--704, 2007. 10.1098/rstb.2006.2004.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2: 189--208, 1971. 10.1016/0004-3702(71)90010-5. Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Frampton and O. Lemon. Recent research advances in reinforcement learning in spoken dialogue systems. The Knowledge Engineering Review, 24 (4): 375--408, 2009. 10.1017/S0269888909990166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. S. Ge and M. J. Matarić. Preface. International Journal of Social Robotics, 1 (1): 1--2, 2009. 10.1007/s12369-008-0010-2.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Giuliani, M. E. Foster, A. Isard, C. Matheson, J. Oberlander, and A. Knoll. Situated reference in a hybrid human-robot interaction system. In Proceedings of INLG 2010, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. Horf, R. Roller, and S. Wilske. MiCo: The robotic bartender for mini-cocktails. http://www.coli.uni-saarland.de/courses/lego-04/page.php?id=barkeeper, 2004.Google ScholarGoogle Scholar
  15. A. Hunt and S. McGlashan. Speech recognition grammar specification version 1.0. W3C recommendation, W3C, Mar. 2004.Google ScholarGoogle Scholar
  16. K. Huth. Wie man ein Bier bestellt. Master's thesis, Universität Bielefeld, 2011.Google ScholarGoogle Scholar
  17. A. Isard and C. Matheson. Rhetorical structure for natural language generation in dialogue. In Proceedings of SemDial 2012, 2012.Google ScholarGoogle Scholar
  18. A. Kapoor, W. Burleson, and R. W. Picard. Automatic prediction of frustration. International Journal of Human-Computer Studies, 65 (8): 724--736, 2007. 10.1016/j.ijhcs.2007.02.003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. Larsson and D. Traum. Information state and dialogue management in the TRINDI dialogue move engine toolkit. Natural Language Engineering, 6 (3&4): 323--340, 2000. 10.1017/S1351324900002539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. J. Litman and S. Pan. Designing and evaluating an adaptive spoken dialogue system. User Modeling and User-Adapted Interaction, 12 (2-3): 111--137, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W. C. Mann and S. A. Thompson. Rhetorical structure theory: Toward a functional theory of text organization. Text, 8 (3): 243--281, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  22. E. Márquez Segura, M. Kriegel, R. Aylett, A. Deshmukh, and H. Cramer. How do you like me in this: User embodiment preferences for companion agents. In Proceedings of IVA 2012, Sept. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Masuda and D. Misaki. Development of Japanese green tea serving robot "T-Bartender". In Proceedings of ICMA 2005, volume 2, pages 1069--1074, July 2005. 10.1109/ICMA.2005.1626700.Google ScholarGoogle ScholarCross RefCross Ref
  24. Y. Matsusaka, T. Tojo, and T. Kobayashi. Conversation robot participating in group conversation. IEICE Transactions on Information and Systems, 86 (1): 26--36, 2003.Google ScholarGoogle Scholar
  25. B. Mutlu, T. Shiwa, T. Kanda, H. Ishiguro, and N. Hagita. Footing in human-robot conversations: how robots might shape participant roles using gaze cues. In Proceedings of HRI 2009, pages 61--68, 2009. 10.1145/1514095.1514109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Pateraki, H. Baltzakis, and T. P. Visual tracking of hands, faces and facial features as a basis for human-robot communication. In Proceedings of the IROS 2011 Workshop on Visual Tracking and Omnidirectional Vision, September 2011.Google ScholarGoogle Scholar
  27. M. Pateraki, H. Baltzakis, and P. Trahanias. Using Dempster's rule of combination to robustly estimate pointed targets. In Proceedings of ICRA 2012, May 2012.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with incomplete information and sensing. In Proceedings of AIPS-2002, pages 212--221, Apr. 2002.Google ScholarGoogle Scholar
  29. R. P. A. Petrick and F. Bacchus. Extending the knowledge-based approach to planning with incomplete information and sensing. In Proceedings of KR-2004, pages 613--622, June 2004.Google ScholarGoogle Scholar
  30. R. P. A. Petrick and M. E. Foster. What would you like to drink? recognising and planning with social states in a robot bartender domain. In Proceedings of CogRob 2012, 2012.Google ScholarGoogle Scholar
  31. M. Rickert. Efficient Motion Planning for Intuitive Task Execution in Modular Manipulation Systems. Dissertation, Technische Universität München, 2011.Google ScholarGoogle Scholar
  32. V. Rieser and O. Lemon. Reinforcement Learning for Adaptive Dialogue Systems: A Data-driven Methodology for Dialogue Management and Natural Language Generation. Springer, 2011. 10.1007/978-3-642-24942-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Robotics Library. URL http://roblib.sf.net/.Google ScholarGoogle Scholar
  34. M. Sigalas, H. Baltzakis, and P. Trahanias. Visual tracking of independently moving body and arms. In Proceedings of IROS '09, Oct. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Vinciarelli, M. Pantic, and H. Bourlard. Social signal processing: Survey of an emerging domain. Image and Vision Computing, 27 (12): 1743--1759, 2009. 10.1016/j.imavis.2008.11.007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Wainer, D. J. Feil-Seifer, D. A. Shell, and M. J. Matarić. Embodiment and human-robot interaction: A task-based perspective. In Proceedings of IEEE RO-MAN 2007, pages 872--877, Aug. 2007. 10.1109/ROMAN.2007.4415207.Google ScholarGoogle ScholarCross RefCross Ref
  37. M. Walker, C. Kamm, and D. Litman. Towards developing general models of usability with PARADISE. Natural Language Engineering, 6 (3&4): 363--377, 2000. 10.1017/S1351324900002503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. A. Walker. An application of reinforcement learning to dialogue strategy selection in a spoken dialogue system for email. Journal of Artificial Intelligence Research, 12: 387--416, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. M. White. Efficient realization of coordinate structures in Combinatory Categorial Grammar. Research on Language and Computation, 4 (1): 39--75, 2006. 10.1007/s11168-006-9010-2.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Two people walk into a bar: dynamic multi-party social interaction with a robot agent

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ICMI '12: Proceedings of the 14th ACM international conference on Multimodal interaction
      October 2012
      636 pages
      ISBN:9781450314671
      DOI:10.1145/2388676

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 October 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate453of1,080submissions,42%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader