skip to main content
10.1145/2413097.2413148acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Creating and benchmarking a new dataset for physical activity monitoring

Authors Info & Claims
Published:06 June 2012Publication History

ABSTRACT

Physical activity monitoring has recently become an important field in wearable computing research. However, there is a lack of a commonly used, standard dataset and established benchmarking problems. In this work, a new dataset for physical activity monitoring --- recorded from 9 subjects, wearing 3 inertial measurement units and a heart rate monitor, and performing 18 different activities --- is created and made publicly available. Moreover, 4 classification problems are benchmarked on the dataset, using a standard data processing chain and 5 different classifiers. The benchmark shows the difficulty of the classification tasks and exposes some challenges, defined by e.g. a high number of activities and personalization.

References

  1. B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, a. M. Swartz, S. J. Strath, W. L. O'Brien, D. R. Bassett, K. H. Schmitz, P. O. Emplaincourt, D. R. Jacobs, and a. S. Leon. Compendium of physical activities: an update of activity codes and MET intensities. Medicine and science in sports and exercise, 32(9):498--504, Sept. 2000.Google ScholarGoogle Scholar
  2. L. Bao and S. Intille. Activity recognition from user-annotated acceleration data. In Proc. 2nd Int. Conf. Pervasive Comput, pages 1--17, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  3. BM-innovations. http://www.bm-innovations.com.Google ScholarGoogle Scholar
  4. M. Ermes, J. Pärkkä, and L. Cluitmans. Advancing from offline to online activity recognition with wearable sensors. In 30th Annual International IEEE EMBS Conference, pages 4451--4454, Jan. 2008.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Ermes, J. Pärkkä, J. Mäntyjärvi, and I. Korhonen. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed., 12(1):20--26, Jan. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA Data Mining Software: an Update. SIGKDD Explorations, 11(1), 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Huynh and B. Schiele. Analyzing features for activity recognition. In sOc-EUSAI '05, pages 159--163. ACM Press, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Intille, K. Larson, E. Tapia, J. Beaudin, P. Kaushik, J. Nawyn, and R. Rockinson. Using a live-in laboratory for ubiquitous computing research. Proc. Int. Conf. on Pervasive Computing, pages 349--365, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Lukowicz, G. Pirkl, D. Bannach, F. Wagner, A. Calatroni, K. Förster, T. Holleczek, M. Rossi, D. Roggen, G. Tröster, and Others. Recording a complex, multi modal activity data set for context recognition. In 23rd International Conference on Architecture of Computing Systems (ARCS), pages 1--6. VDE, 2010.Google ScholarGoogle Scholar
  10. PAMAP (Physical Activity Monitoring for Aging People). http://www.pamap.org.Google ScholarGoogle Scholar
  11. J. Pärkkä, L. Cluitmans, and M. Ermes. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree. IEEE Trans. Inf. Technol. Biomed., 14(5):1211--5, Sept. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Pärkkä, M. Ermes, K. Antila, M. van Gils, A. Mänttäri, and H. Nieminen. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations. 29th Annual International IEEE EMBS Conference, pages 1511--4, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  13. S. Patel, C. Mancinelli, P. Bonato, J. Healey, and M. Moy. Using Wearable Sensors to Monitor Physical Activities of Patients with COPD: A Comparison of Classifier Performance. In Body Sensor Networks, pages 236--241, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Ravi, N. Dandekar, P. Mysore, and M. Littman. Activity recognition from accelerometer data. In 17th Conference on Innovative Applications of Artificial Intelligence (IAAI), pages 1541--1546, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Reiss and D. Stricker. Introducing a Modular Activity Monitoring System. In 33rd Annual International IEEE EMBS Conference, pages 5621--5624, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Reiss and D. Stricker. Towards Global Aerobic Activity Monitoring. In 4th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. In 16th IEEE International Symposium on Wearable Computers (ISWC), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Reiss, M. Weber, and D. Stricker. Exploring and Extending the Boundaries of Physical Activity Recognition. In IEEE SMC Workshop on Robust Machine Learning Techniques for Human Activity Recognition, pages 46--50, 2011.Google ScholarGoogle Scholar
  19. D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G. Troster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, and Others. Collecting complex activity datasets in highly rich networked sensor environments. In Seventh Int. Conf. on Networked Sensing Systems (INSS), pages 233--240. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. D. Roggen, S. Magnenat, M. Waibel, and G. Tröster. Wearable Computing: Designing and Sharing Activity Recognition Systems Across Platforms. IEEE Robotics & Automation Magazine, 18(2):83--95, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Saar-Tsechansky and F. Provost. Handling Missing Values when Applying Classification Models. Journal of Machine Learning Research, 8:1625--1657, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Sagha, S. T. Digumarti, R. Chavarriaga, A. Calatroni, D. Roggen, and G. Tr. Benchmarking classification techniques using the Opportunity human activity dataset. In IEEE SMC Workshop on Robust Machine Learning Techniques for Human Activity Recognition, pages 36--40, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  23. Trivisio. http://www.trivisio.com.Google ScholarGoogle Scholar
  24. T. van Kasteren, H. Alemdar, and C. Ersoy. Effective Performance Metrics for Evaluating Activity Recognition Methods. In ARCS 2011 - 24th International Conference on Architecture of Computing Systems, 2011.Google ScholarGoogle Scholar
  25. T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse. Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp), pages 1--9. ACM Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Viliv-S5. http://www.myviliv.com/ces/main_s5.html.Google ScholarGoogle Scholar
  27. J. A. Ward and H. W. Gellersen. Performance Metrics for Activity Recognition. ACM Transactions on Intelligent Systems and Technology, 2(1), 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Xue and L. Jin. A Naturalistic 3D Acceleration-based Activity Dataset & Benchmark Evaluations. In International Conference on Systems, Man and Cybernetics (SMC), pages 4081--4085, 2010.Google ScholarGoogle Scholar

Index Terms

  1. Creating and benchmarking a new dataset for physical activity monitoring

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader