skip to main content
10.1145/2433396.2433479acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

Modeling dynamic behavior in large evolving graphs

Published:04 February 2013Publication History

ABSTRACT

Given a large time-evolving graph, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the "roles" of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable and computationally efficient. We applied our model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.

References

  1. J. Abello, T. Eliassi-Rad, and N. Devanur. Detecting novel discrepancies in communication networks. In ICDM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing the evolutionary behavior of interaction graphs. In SIGKDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Cha, A. Mislove, and K. P. Gummadi. A Measurement-driven Analysis of Information Propagation in the Flickr Social Network. In WWW, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Dhamdhere and C. Dovrolis. Ten years in the evolution of the internet ecosystem. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Dhamdhere and C. Dovrolis. The internet is at: modeling the transition from a transit hierarchy to a peering mesh. In In CoNEXT, page 21, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Dunlavy, T. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factorizations. TKDD, 5(2):10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. W. Fu, L. Song, and E. Xing. Dynamic mixed membership blockmodel for evolving networks. In ICML, pages 329--336. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Gotz, J. Leskovec, M. McGlohon, and C. Faloutsos. Modeling blog dynamics. In ICWSM, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of communities in dynamic social networks. In ASONAM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Habiba, Y. Yu, T. Berger-Wolf, and J. Saia. Finding spread blockers in dynamic networks. In ASONAM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Hand and R. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Machine Learning, 45(2):171--186, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and C. Faloutsos. It's Who You Know: Graph Mining Using Recursive Structural Features. In SIGKDD, pages 1--10, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, and C. Faloutsos. RolX: Role Extraction and Mining in Large Networks. In KDD, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Leskovec, L. Adamic, and B. Huberman. The dynamics of viral marketing. TWEB, 1(1):1--39, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. In KDD, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. Tseng. Analyzing communities and their evolutions in dynamic social networks. TKDD, 3(2):8, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. P. Mahadevan, D. Krioukov, M. Fomenkov, X. Dimitropoulos, et al. The Internet AS-level topology: three data sources and one definitive metric. ACM SIGCOMM CCR, 36(1):17--26, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. O'Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algorithms for event-based network data. SIGKDD Explorations, 7(2):30, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Pan and J. Saramaki. Path lengths, correlations, and centrality in temporal networks. arXiv:1101.5913, 2011.Google ScholarGoogle Scholar
  22. S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In VLDB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. R. Rossi, B. Gallagher, J. Neville, and K. Henderson. Modeling temporal behavior in large networks: A dynamic mixed-membership model. In LLNL-TR-514271, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  24. R. Rossi and D. Gleich. Dynamic pagerank using evolving teleportation. In WAW, pages 126--137. LNCS 7323, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Rossi, L. McDowell, D. Aha, and J. Neville. Transforming graph data for statistical relational learning. Journal of Artificial Intelligence (JAIR), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Rossi and J. Neville. Time-evolving relational classification and ensemble methods. In PAKDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Sun, C. Faloutsos, S. Papadimitriou, and P. Yu. Graphscope: parameter-free mining of large time-evolving graphs. In KDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in dynamic multi-mode networks. In SIGKDD, pages 677--685. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. X. Wang, X. Liu, and D. Loguinov. Modeling the Evolution of Degree Correlation in Scale-Free Topology Generators. In INFOCOM, 2007.Google ScholarGoogle Scholar
  30. E. Xing, W. Fu, and L. Song. A state-space mixed membership blockmodel for dynamic network tomography. Ann. Appl. Stat., 4(2):535--566, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modeling dynamic behavior in large evolving graphs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WSDM '13: Proceedings of the sixth ACM international conference on Web search and data mining
      February 2013
      816 pages
      ISBN:9781450318693
      DOI:10.1145/2433396

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 February 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate498of2,863submissions,17%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader