skip to main content
research-article

AIREAL: interactive tactile experiences in free air

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

AIREAL is a novel haptic technology that delivers effective and expressive tactile sensations in free air, without requiring the user to wear a physical device. Combined with interactive computers graphics, AIREAL enables users to feel virtual 3D objects, experience free air textures and receive haptic feedback on gestures performed in free space. AIREAL relies on air vortex generation directed by an actuated flexible nozzle to provide effective tactile feedback with a 75 degrees field of view, and within an 8.5cm resolution at 1 meter. AIREAL is a scalable, inexpensive and practical free air haptic technology that can be used in a broad range of applications, including gaming, mobile applications, and gesture interaction among many others. This paper reports the details of the AIREAL design and control, experimental evaluations of the device's performance, as well as an exploration of the application space of free air haptic displays. Although we used vortices, we believe that the results reported are generalizable and will inform the design of haptic displays based on alternative principles of free air tactile actuation.

Skip Supplemental Material Section

Supplemental Material

tp108.mp4

mp4

17.1 MB

References

  1. Azuma, R., Baillot, Y., Behrenger, R., Feiner, S., Julier, S. and Macintyre, B. 2001. Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl. 21, 34--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bau, O., Poupyrev, I., Israr, A. and Harrison, C. 2010. TeslaTouch: electrovibration for touch surfaces. In Proc. of UIST'10, ACM, 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bau, O. and Poupyrev, I., 2012. REVEL: Tactile feedback technology for Augmented Reality. ACM Trans. Graph. 34, 1, (Aug), 89--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bianchi, G., Knoerlein, B., Szekely, M. and Harders, M. 2006. High precision augmented reality haptics. In Proc. of EuroHaptics'06, 169--178.Google ScholarGoogle Scholar
  5. Bolanowski JR., S. J., Gesheider, G. A., Verrillo, R. T., and Checkosky, C. M. 1988. Four channels mediate the mechanical aspects of touch. Journal of ASA. 84 5, 1680--1694.Google ScholarGoogle Scholar
  6. Glezer, A. 1988. The Formation of Vortex Rings. In Physics of Fluids, 31, 3532.Google ScholarGoogle ScholarCross RefCross Ref
  7. Gharib, M., Rambod, E., and Shariff, K. 1997. A universal time scale for vortex ring formation. In Journal of Fluid Mechanics 360, 121--140.Google ScholarGoogle ScholarCross RefCross Ref
  8. Harrison, C., Tan, D., and Morris, D. 2010. Skinput: appropriating the body as an input surface. In Proc. of CHI. 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hashiguchi, S., Omori, N, Yamamoto, S., Ueoka, R., and Takeda. 2012. Application to 3D Theater using a Air Pressured Facial Tactile Display. In Proc. of Asia Digital Art and Design.Google ScholarGoogle Scholar
  10. Heilig, M. 1962 Sensorama Simulator. US Patent 3050870.Google ScholarGoogle Scholar
  11. Heshan, N., Shui, Z., and Shuhei, Y. 2011. Study on the Control and Miniaturization of Tactile Display using the Air Gun. In Proc. of VR Soc. Japan. 33E-5.Google ScholarGoogle Scholar
  12. Hoshi, T., Takashami, M., Iwamoto, T., and Shinoda, H. 2010 Noncontact tactile display based on radiation pressure of Airborne Ultrasound. IEEE Trans. Haptics. 3, 155--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Israr, A., Tan, H., and Reed, C. 2006. Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. Journal of ASA. 120, 2789--2800.Google ScholarGoogle ScholarCross RefCross Ref
  14. Israr, A. and Poupyrev, I. 2011. Tactile brush: Drawing on skin with a tactile grid display. In Proc. of CHI'11, ACM, 2019--2028. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Iwamoto, T., Tatezono, M., and Shinoda, H. 2008 Non-Contact Method for Producing Tactile Sensation Using Airborne Ultrasound, In Proc. of EuroHaptics 2008, 504--513. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jones, B., Sodhi, R., Forsyth, D., Bailey, B., and Maciocci, G. 2012. Around device interaction for multiscale navigation. In Proc. of Mobile HCI. ACM 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kenner, C. 2010. GlovePIE http://glovepie.orgGoogle ScholarGoogle Scholar
  18. Kruijff, E. and Pander, A. 2005. Experiences of Using Shockwaves for Haptic Sensations. In Proc. of IEEE VR 2005 Workshop on New Directions in 3D User Interfaces. 37--42Google ScholarGoogle Scholar
  19. Leapmotion. 2013. https://leapmotion.com/Google ScholarGoogle Scholar
  20. Jason, A., Marshall, M., and Subramanian, S. 2011 Adding haptic feedback to mobile TV. In Proc. of CHI 2011, ACM. 1975--1980 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Leek, M. R. 2001. Adaptive procedures in psychophysical research. Perception and Psychophysics 63 8, 1279--1292.Google ScholarGoogle Scholar
  22. Microsoft. 2010 Microsoft Surface 2.0Google ScholarGoogle Scholar
  23. Mosheni, K. 2002. Optimal Vortex Ring Formation at the Exit of a Shock Tube. In Proc. of American Institue of Aeronatuics and Astronautics Sciences Meeting and Exhibit.Google ScholarGoogle Scholar
  24. Poupyrev, I., Tan, D., Billinghurst, M., Kato, H., Regenbrecht, H., and Tetsutani, N. 2002. Developing a generic augmented-reality interface, IEEE Computer, 35, 44--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Poupyrev, I. and Maruyama, S. 2003. Tactile interfaces for small touch screens. In Proc. of UIST'03, ACM, 217--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Raskar R., Welch G., Cutts M., Lake M, Stesin L., and Fuchs, H. 1998. Office of the future. In Proc. SIGGRAPH '98, ACM, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rekimoto, J. and Saitoh, M. 1999. Augmented surfaces: a spatially continuous work space for hybrid computing environments. In Proc. of CHI'99, ACM, 378--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rice, M., Wan, M., Foo, M., Ng, J., Wai, Z., Janel, K., Samuel, L., and Linda, T. 2011 Evaluating gesture-based games with older adults on a large screen display. ACM Trans. Graph. 34, 1, (Aug) 17--24.Google ScholarGoogle Scholar
  29. Rogers, W. 1858. On the formation of rotating rings by air and liquids under certain conditions of discharge. Am. J. Sci. 26, 246--58.Google ScholarGoogle Scholar
  30. Rosenfeld, M., Rambod, E., and Gharib, M. 1998 Circulation and formation number of laminar vortex rings. In Journal of Fluid Mechanics, 376, 297--318Google ScholarGoogle ScholarCross RefCross Ref
  31. Ruiz, J., Li, Y., Lank, E. 2011 User-defined Motion Gestures for Mobile Interaction. In Proc. of CHI 2011, ACM, 197--206 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Russel, A. 2011 Air vortex ring communication between mobile robots. Robotics and Autonomous Systems. 59, 65--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sodhi, R., Benko, H., and Wilson, A. 2012. Lightguide: projected visualizations for hand movement guidance. In Proc of CHI, ACM, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shariff, K. 1992 Vortex Rings. Annual Review of Fluid Mechanics. 24. 235--79.Google ScholarGoogle Scholar
  35. Sherrick, C. 1991 Vibrotactile pattern perception: some findings and applications. in The Psychology of Touch, M. Heller and W. Schiff, Editors. Lawrence Erlbaum Associates. 189--217.Google ScholarGoogle Scholar
  36. Suzuki, Y. and Kobayashi, M. 2005 Air Driven Force Feedback in Virtual Reality. Comp. Graphics and Applications. 25. 44--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Takamori, F., Tsuruyama, N., and Takeda, T. 2010. Effect of Vortext Ring using Air Canon on Sense of Touch. In Proc. of IEICE.Google ScholarGoogle Scholar
  38. Takeda, T. 2009. A Study of Air Canon for Entertainment. Master's Thesis Kyushu Universtiy.Google ScholarGoogle Scholar
  39. Tokuda, Y., Suzuki, Y., Nishimura, K., Tanikawa, T., and Hirose, M. 2010. Cloud Display. In Proc. of ACE, 32--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Willis, K. D. D., Poupyrev, I., Hudson, S. E. and Mahler, M. 2011. SideBySide: ad-hoc multi-user interaction with handheld projectors. In Proc. of UIST'11, ACM, 431--440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wilson, A. D. and Benko, H. 2012. Steerable Augmented Reality with Beamatron. In Proc. of UIST, ACM, 413--422 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yanagida, Y., Kawato, S. and Noma, H. 2004. Projection-Based Olfactory Display with Tracking. In Proc. IEEE VR 2004, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AIREAL: interactive tactile experiences in free air

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader