skip to main content
research-article

Global illumination with radiance regression functions

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present radiance regression functions for fast rendering of global illumination in scenes with dynamic local light sources. A radiance regression function (RRF) represents a non-linear mapping from local and contextual attributes of surface points, such as position, viewing direction, and lighting condition, to their indirect illumination values. The RRF is obtained from precomputed shading samples through regression analysis, which determines a function that best fits the shading data. For a given scene, the shading samples are precomputed by an offline renderer.

The key idea behind our approach is to exploit the nonlinear coherence of the indirect illumination data to make the RRF both compact and fast to evaluate. We model the RRF as a multilayer acyclic feed-forward neural network, which provides a close functional approximation of the indirect illumination and can be efficiently evaluated at run time. To effectively model scenes with spatially variant material properties, we utilize an augmented set of attributes as input to the neural network RRF to reduce the amount of inference that the network needs to perform. To handle scenes with greater geometric complexity, we partition the input space of the RRF model and represent the subspaces with separate, smaller RRFs that can be evaluated more rapidly. As a result, the RRF model scales well to increasingly complex scene geometry and material variation. Because of its compactness and ease of evaluation, the RRF model enables real-time rendering with full global illumination effects, including changing caustics and multiple-bounce high-frequency glossy interreflections.

Skip Supplemental Material Section

Supplemental Material

tp136.mp4

mp4

18.9 MB

References

  1. Beale, M. H., Hagan, M. T., and Demuth, H. B. 2012. Neural Network Toolbox user's guide.Google ScholarGoogle Scholar
  2. Blum, E., and Li, L. 1991. Approximation theory and feedforward networks. Neural Networks 4, 4, 511--515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chester, D. 1990. Why two hidden layers are better than one. In Int. Joint Conf. on Neural Networks (IJCNN), 265--268.Google ScholarGoogle Scholar
  4. Cohen, M. F., Wallace, J., and Hanrahan, P. 1993. Radiosity and realistic image synthesis. Academic Press Professional, Inc., San Diego, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Crassin, C., Neyret, F., Sainz, M., Green, S., and Eisemann, E. 2011. Interactive indirect illumination using voxel cone tracing. Computer Graphics Forum 30, 7.Google ScholarGoogle ScholarCross RefCross Ref
  6. Dachsbacher, C., and Stamminger, M. 2006. Splatting indirect illumination. In I3D, 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dachsbacher, C. 2011. Analyzing visibility configurations. IEEE Trans. Vis. Comput. Graph. 17, 4, 475--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dong, Z., Kautz, J., Theobalt, C., and Seidel, H.-P. 2007. Interactive global illumination using implicit visibility. In Pacific Conference on Computer Graphics and Applications, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Donikian, M., Walter, B., Bala, K., Fernandez, S., and Greenberg, D. P. 2006. Accurate direct illumination using iterative adaptive sampling. IEEE TVCG 12 (May), 353--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Donnelly, W., and Lauritzen, A. 2006. Variance shadow maps. In I3D, 161--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. FAQ. How many hidden layers should I use? Neural Network FAQ, Usenet newsgroup comp.ai.neural-nets, ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl.Google ScholarGoogle Scholar
  13. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In I3D, 7--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. Neuroanimator: fast neural network emulation and control of physics-based models. In Proc. SIGGRAPH '98, 9--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hagan, M., and Menhaj, M. 1994. Training feedforward networks with the marquardt algorithm. Neural Networks, IEEE Transactions on 5, 6, 989--993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2 ed. Springer.Google ScholarGoogle Scholar
  17. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 1089--1097. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hertzmann, A. 2003. Machine learning for computer graphics: A manifesto and tutorial. In Pacific Conference on Computer Graphics and Applications, 22--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hinton, G. E. 1989. Connectionist learning procedures. Artificial Intelligence 40, 1--3, 185--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hornik, K., Stinchcombe, M., and White, H. 1989. Multi-layer feedforward networks are universal approximators. Neural Networks 2, 5 (July), 359--366. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jakob, W., 2010. Mitsuba renderer. Department of Computer Science, Cornell University. (http://www.mitsuba-renderer.org).Google ScholarGoogle Scholar
  22. Kaplanyan, A., and Dachsbacher, C. 2010. Cascaded light propagation volumes for real-time indirect illumination. In I3D, 99--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Keller, A. 1997. Instant radiosity. In SIGGRAPH '97, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. X. 2006. Wavelet radiance transport for interactive indirect lighting. In Rendering Techniques '06, 161--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 1208--1215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. Compugraphics '93, 145--153.Google ScholarGoogle Scholar
  27. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F. X., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. 27, 37:1--37:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liu, X., Sloan, P.-P., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Rendering Techniques '04, 337--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. McGuire, M., and Luebke, D. 2009. Hardware-accelerated global illumination by image space photon mapping. In High Performance Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. McKay, M. D., Beckman, R. J., and Conover, W. J. 2000. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 1 (Feb.), 55--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Meyer, M., and Anderson, J. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23, 477--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nichols, G., and Wyman, C. 2010. Interactive indirect illumination using adaptive multiresolution splatting. IEEE TVCG 16, 5, 729--741. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nowrouzezahrai, D., Kalogerakis, E., and Fiume, E. 2009. Shadowing dynamic scenes with arbitrary brdfs. Comput. Graph. Forum: Eurographics Conf. 28, 249--258.Google ScholarGoogle ScholarCross RefCross Ref
  35. Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ramamoorthi, R. 2009. Precomputation-based rendering. Found. Trends. Comput. Graph. Vis. 3 (April), 281--369. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27, 129:1--129:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ritschel, T., Dachsbacher, C., Grosch, T., and Kautz, J. 2012. The state of the art in interactive global illumination. Computer Graphics Forum 31, 1, 160--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3 (July), 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Thiedemann, S., Henrich, N., Grosch, T., and Müller, S. 2011. Voxel-based global illumination. In I3D, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967--976. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wald, I., Mark, W. R., Guenther, J., Boulos, S., Ize, T., Hunt, W., Parker, S. G., and Shirley, P. 2009. State of the art in ray tracing animated scenes. Computer Graphics Forum 28, 6, 1691--1722.Google ScholarGoogle ScholarCross RefCross Ref
  44. Wang, R., Tran, J., and Luebke, D. 2006. All-frequency relighting of glossy objects. ACM Trans. Graph. 25, 2, 293--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, R., Zhu, J., and Humphreys, G. 2007. Precomputed radiance transfer for real-time indirect lighting using a spectral mesh basis. In Rendering Techniques '07, 13--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao, H. 2009. An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28 (July), 91:1--91:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Proc. SIGGRAPH '92, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Global illumination with radiance regression functions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader