skip to main content
10.1145/2464464.2464514acmconferencesArticle/Chapter ViewAbstractPublication PageswebsciConference Proceedingsconference-collections
research-article

Preferential attachment in online networks: measurement and explanations

Published:02 May 2013Publication History

ABSTRACT

We perform an empirical study of the preferential attachment phenomenon in temporal networks and show that on the Web, networks follow a nonlinear preferential attachment model in which the exponent depends on the type of network considered. The classical preferential attachment model for networks by Barabási and Albert (1999) assumes a linear relationship between the number of neighbors of a node in a network and the probability of attachment. Although this assumption is widely made in Web Science and related fields, the underlying linearity is rarely measured. To fill this gap, this paper performs an empirical longitudinal (time-based) study on forty-seven diverse Web network datasets from seven network categories and including directed, undirected and bipartite networks. We show that contrary to the usual assumption, preferential attachment is nonlinear in the networks under consideration. Furthermore, we observe that the deviation from linearity is dependent on the type of network, giving sublinear attachment in certain types of networks, and superlinear attachment in others. Thus, we introduce the preferential attachment exponent β as a novel numerical network measure that can be used to discriminate different types of networks. We propose explanations for the behavior of that network measure, based on the mechanisms that underly the growth of the network in question.

References

  1. Aiello, L. M., Barrat, A., Cattuto, C., Ruffo, G., and Schifanella, R. Link creation and profile alignment in the aNobii social network. In Int. Conf. on Social Computing (2010), 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Albert, R., and Barabási, A.-L. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 1 (2002), 47--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barabási, A.-L., and Albert, R. Emergence of scaling in random networks. Science 286, 5439 (1999), 509--512.Google ScholarGoogle ScholarCross RefCross Ref
  4. Barabási, A.-L., Jeong, H., Neda, Z., Ravasz, E., and Schubert, A. Evolution of the social network of scientific collaborations. Physica A 311, 3--4 (2002), 590--614.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bennett, J., and Lanning, S. The Netflix Prize. In Proc. KDD Cup (2007), 3--6.Google ScholarGoogle Scholar
  6. Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., and Stumme, G. The social bookmark and publication management system BibSonomy. The VLDB J. 19, 6 (dec 2010), 849--875. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bollobás, B. Modern Graph Theory. Springer, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  8. Brandes, U., and Lerner, J. Structural similarity: Spectral methods for relaxed blockmodeling. J. Classification 27, 3 (2010), 279--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Capocci, A., Servedio, V. D. P., Colaiori, F., Buriol, L. S., Donato, D., Leonardi, S., and Caldarelli, G. Preferential attachment in the growth of social networks: The Internet encyclopedia Wikipedia. Phys. Rev. E 74, 3 (2006), 036116.Google ScholarGoogle ScholarCross RefCross Ref
  10. Celma, Ò. Music Recommendation and Discovery in the Long Tail. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., and Scott, J. Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. on Mobile Computing 6, 6 (2007), 606--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Champernowne, D. A model of income distribution. Economic Journal 63 (1953), 318--351.Google ScholarGoogle ScholarCross RefCross Ref
  13. Choudhury, M. D., Lin, Y.-R., Sundaram, H., Candan, K. S., Xie, L., and Kelliher, A. How does the data sampling strategy impact the discovery of information diffusion in social media? In Proc. Int. Conf. on Weblogs and Social Media (2010), 34--41.Google ScholarGoogle Scholar
  14. Choudhury, M. D., Sundaram, H., John, A., and Seligmann, D. D. Social synchrony: Predicting mimicry of user actions in online social media. In Proc. Int. Conf. on Computational Science and Engineering (2009), 151--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Clauset, A., Shalizi, C. R., and Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 4 (2009), 661--703. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dahlander, L., Frederiksen, L., and Rullani, F. Online communities and open innovation: Governance and symbolic value creation. Industry and Innovation 15, 2 (2008), 115--123.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dereich, S., and Mörters, P. Random networks with sublinear preferential attachment: Degree evolutions. Electrical J. of Probability 14 (2009), 1222--1267.Google ScholarGoogle ScholarCross RefCross Ref
  18. Dholakiaa, U. M., Bagozzia, R. P., and Pearo, L. K. A social influence model of consumer participation in network- and small-group-based virtual communities. Int. J. of Research in Marketing 21, 3 (2004), 241--263.Google ScholarGoogle ScholarCross RefCross Ref
  19. Dorogovtsev, S. N., and Mendes, J. F. F. Evolution of networks. Adv. Phys. 51 (2002), 1079--1187.Google ScholarGoogle ScholarCross RefCross Ref
  20. Dror, G., Koenigstein, N., Koren, Y., and Weimer, M. The Yahoo! Music dataset and KDD-Cup'11. In JMLR Workshop and Conf. Proc., vol. 18 (2012), 3--18.Google ScholarGoogle Scholar
  21. Eagle, N., and Pentland, A. S. Reality Mining: Sensing complex social systems. Personal Ubiquitous Computing 10, 4 (2006), 255--268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Emamy, K., and Cameron, R. CiteULike: A researcher's social bookmarking service. Ariadne, 51 (2007).Google ScholarGoogle Scholar
  23. Erdős, P., and Rényi, A. On random graphs I. Publ. Math. Debrecen 6 (1959), 290--297.Google ScholarGoogle ScholarCross RefCross Ref
  24. Faraj, S., and Johnson, S. L. Network exchange patterns in online communities. Organization Science 22, 6 (2010), 1464--1480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gabel, A., and Redner, S. Sublinear but never superlinear preferential attachment by local network growth. arXiv:1212.0518.Google ScholarGoogle Scholar
  26. Gay, B., and Dousset, B. Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry. Research Policy 34, 10 (2005), 1457--1475.Google ScholarGoogle ScholarCross RefCross Ref
  27. Gibrat, R. Les Inegalités économiques: Applications aux inégalités des richesses, à la concentration des entreprises, aux populations des villes, aux statistiques des familles, etc., d'une loi nouvelle: la loi de l'effect proportionnel. Sirey, 1931.Google ScholarGoogle Scholar
  28. GroupLens Research. MovieLens data sets. http://www.grouplens.org/node/73, October 2006.Google ScholarGoogle Scholar
  29. Gulati, R., Puranam, P., and Tushman, M. Meta-organization design: Rethinking design in interorganizational and community contexts. Strategic Management J. 33 (2012), 571--586.Google ScholarGoogle ScholarCross RefCross Ref
  30. Gómez, V., Kaltenbrunner, A., and López, V. Statistical analysis of the social network and discussion threads in Slashdot. In Proc. Int. World Wide Web Conf. (2008), 645--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hanaki, N., Nakajima, R., and Ogura, Y. The dynamics of R&D network in the IT industry. Research Policy 39, 3 (2010), 386--399.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jeong, H., Néda, Z., and Barabási, A. L. Measuring preferential attachment for evolving networks. Europhysics Lett. 61, 4 (2001), 567--572.Google ScholarGoogle Scholar
  33. Kapteyn, J. C., and van Uven, M. J. Skew Frequency Curves in Biology and Statistics. Hoitsema Brothers, Groningen, 1916.Google ScholarGoogle Scholar
  34. Klimt, B., and Yang, Y. The Enron corpus: A new dataset for email classification research. In Proc. European Conf. on Machine Learning (2004), 217--226.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Krapivsky, P. L., and Krioukov, D. Scale-free networks as preasymptotic regimes of superlinear preferential attachment. Phys. Rev. E 78 (2008), 026114.Google ScholarGoogle ScholarCross RefCross Ref
  36. Krapivsky, P. L., and Redner, S. Organization of growing random networks. Phys. Rev. E 63 (2001), 066123.Google ScholarGoogle ScholarCross RefCross Ref
  37. Lemarchand, G. A. The long-term dynamics of co-authorship scientific networks: Iberoamerican countries (1973--2010). Research Policy 41, 2 (2012), 291--305.Google ScholarGoogle ScholarCross RefCross Ref
  38. Ley, M. The DBLP computer science bibliography: Evolution, research issues, perspectives. In Proc. Int. Symp. on String Processing and Information Retrieval (2002), 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Liben-Nowell, D., and Kleinberg, J. The link prediction problem for social networks. In Proc. Int. Conf. on Information and Knowledge Management (2003), 556--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B., and Lauw, H. W. Detecting product review spammers using rating behaviors. In Proc. Int. Conf. on Information and Knowledge Management (2010), 939--948. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Lotka, A. J. The frequency distribution of scientific productivity. J. of the Washington Academy of Sciences 16, 12 (1926), 317--324.Google ScholarGoogle Scholar
  42. Massa, P., and Avesani, P. Controversial users demand local trust metrics: an experimental study on epinions.com community. In Proc. American Association for Artificial Intelligence Conf. (2005), 121--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Mislove, A. Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems. PhD thesis, Rice University, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mislove, A., Koppula, H. S., Gummadi, K. P., Druschel, P., and Bhattacharjee, B. Growth of the Flickr social network. In Proc. Workshop on Online Social Networks (2008), 25--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Moser, C., Groenewegen, P., and Huysman, M. Social norms as governance mechanisms in online professional communities. In Proc. Academy of Management Meeting (2011).Google ScholarGoogle Scholar
  46. Newman, M. E. J. Clustering and preferential attachment in growing networks. Phys. Rev. E 67, 5 (2002).Google ScholarGoogle Scholar
  47. Newman, M. E. J. The structure and function of complex networks. SIAM Review 45, 2 (2003), 167--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Newman, M. E. J. Power laws, Pareto distributions and Zipf's law. Contemporary Phys. 46, 5 (2006), 323--351.Google ScholarGoogle Scholar
  49. Oliveira, R., and Spencer, J. Connectivity transitions in networks with super-linear preferential attachment. Internet Math 2 (2005), 121--163.Google ScholarGoogle ScholarCross RefCross Ref
  50. O'mahony, S., and Ferraro, F. The emergence of governance in an open source community. Academy of Management J. 50, 5 (2007), 1079--1106.Google ScholarGoogle ScholarCross RefCross Ref
  51. Opsahl, T., and Panzarasa, P. Clustering in weighted networks. Social Networks 31, 2 (2009), 155--163.Google ScholarGoogle ScholarCross RefCross Ref
  52. Opsahl, T., and Panzarasa, P. Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks 34 (2011).Google ScholarGoogle Scholar
  53. Pfeil, U., Zaphiris, P., and Ang, C. S. Cultural differences in collaborative authoring of Wikipedia. J. of Computer-mediated Communication 12, 1 (2006), 88--113.Google ScholarGoogle ScholarCross RefCross Ref
  54. Rocha, L. E. C., Liljeros, F., and Holme, P. Information dynamics shape the sexual networks of Internet-mediated prostitution. Proc. of the National Academy of Sciences 107, 13 (2010), 5706--5711.Google ScholarGoogle ScholarCross RefCross Ref
  55. Rudas, A., Tóth, B., and Valkó, B. Random trees and general branching processes. Random Struct. Algorithms 31, 2 (2007), 186--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Said, A., De Luca, E. W., and Albayrak, S. How social relationships affect user similarities. In Proc. IUI Workshop on Social Recommender Systems (2010).Google ScholarGoogle Scholar
  57. Simon, H. A. On a class of skew distribution functions. Biometrika 42 (1955), 425--440.Google ScholarGoogle ScholarCross RefCross Ref
  58. Stack Exchange Inc. Stack Exchange Data Explorer. http://data.stackexchange.com/, 2011.Google ScholarGoogle Scholar
  59. Tremayne, M., Zheng, N., Lee, J. K., and Jeong, J. Issue publics on the Web: Applying network theory to the war blogosphere. J. of Computer-mediated Communication 12, 1 (2006), 290--310.Google ScholarGoogle ScholarCross RefCross Ref
  60. Viswanath, B., Mislove, A., Cha, M., and Gummadi, K. P. On the evolution of user interaction in Facebook. In Proc. Workshop on Online Social Networks (2009), 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Wagner, C. S., and Leydesdorff, L. Network structure, self-organization, and the growth of international collaboration in science. Research Policy 34, 10 (2005), 1608--1618.Google ScholarGoogle ScholarCross RefCross Ref
  62. Wang, E. S. T., and Chen, L. S. L. Forming relationship commitments to online communities: The role of social motivations. Computers in Human Behavior 28, 2 (2012), 570--575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Watts, D. J. The 'new' science of networks. Annual Review of Sociology 30 (2004), 243--270.Google ScholarGoogle ScholarCross RefCross Ref
  64. Wikimedia Foundation. Wikimedia downloads. http://dumps.wikimedia.org/, January 2010.Google ScholarGoogle Scholar
  65. Yule, G. U. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F. R. S. Philos. Trans. of the Royal Society of London, Ser. B 213 (1925), 21--87.Google ScholarGoogle ScholarCross RefCross Ref
  66. Zhou, T. Understanding online community user participation: a social influence perspective. Internet Research 21, 1 (2011), 67--81.Google ScholarGoogle ScholarCross RefCross Ref
  67. Zipf, G. K. The Psychobiology of Language. Houghton Mifflin, 1935.Google ScholarGoogle Scholar

Index Terms

  1. Preferential attachment in online networks: measurement and explanations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      WebSci '13: Proceedings of the 5th Annual ACM Web Science Conference
      May 2013
      481 pages
      ISBN:9781450318891
      DOI:10.1145/2464464

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 2 May 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate218of875submissions,25%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader