skip to main content
research-article

Distributed scheduling schemes for wireless mesh networks: A survey

Authors Info & Claims
Published:11 July 2013Publication History
Skip Abstract Section

Abstract

An efficient scheduling scheme is a crucial part of Wireless Mesh Networks (WMNs)—an emerging communication infrastructure solution for autonomy, scalability, higher throughput, lower delay metrics, energy efficiency, and other service-level guarantees. Distributed schedulers are preferred due to better scalability, smaller setup delays, smaller management overheads, no single point of failure, and for avoiding bottlenecks. Based on the sequence in which nodes access the shared medium, repetitiveness, and determinism, distributed schedulers that are supported by wireless mesh standards can be classified as either random, pseudo-random, or cyclic schemes. We performed qualitative and quantitative studies that show the strengths and weaknesses of each category, and how the schemes complement each other. We discuss how wireless standards with mesh definitions have evolved by incorporating and enhancing one or more of these schemes. Emerging trends and research problems remaining for future research also have been identified.

References

  1. Akyildiz, I. F. and Wang, X. 2005. A survey on wireless mesh networks. IEEE Comm. Mag. 43, S23--S30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Akyildiz, I. F. and Wang, X. 2008. Cross-layer design in wireless mesh networks. IEEE Trans. Vehicular Technol. 57, 1061--1076.Google ScholarGoogle ScholarCross RefCross Ref
  3. Ali, N. A. A., Taha, A.-E. M., Hassanein, H. S., and Mouftah, H. T. 2008. IEEE 802.16 mesh schedulers: Issues and design challenges. IEEE Netw. 22, 58--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Andrews, J., Weber, S., and Haenggi, M. 2007. Ad hoc networks: To spread or not to spread? IEEE Comm. Mag. 45, 12, 84--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Aziz, A., Starobinski, D., and Thiran, P. 2011. Understanding and tackling the root causes of instability in wireless mesh networks. IEEE/ACM Trans. Netw. 19, 4, 1178--1193. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bao, L. and Garcia-Luna-Aceves, J. J. 2001. A new approach to channel access scheduling for ad hoc networks. In Proceedings of the ACM Conference on Mobile Computing and Networking (MobiCom'01). ACM Press, New York, 210--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bayer, N., Sivchenko, D., Xu, B., Rakocevic, V., and Habermann, J. 2006. Transmission timing of signaling messages in ieee 802.16 based mesh networks. In Proceedings of the 12th European Wireless Conference on Enabling Technologies for Wireless Multimedia Communications. 1--7.Google ScholarGoogle Scholar
  8. Bayer, N., Xu, B., Rakocevic, V., and Habermann, J. 2007. Improving the performance of the distributed scheduler in ieee 802.16 mesh networks. In Proceedings of the 65th IEEE Vehicular Technology Conference (VTC'07). 1193--1197.Google ScholarGoogle Scholar
  9. Bharghavan, V., Demers, A., Shenker, S., and Zhang, L. 1994. MACAW: A media access protocol for wireless lans. In Proceedings of the Conference on Communications Architectures, Protocols and Applications (SIGCOMM'94). ACM Press, New York, 212--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bruno, R., Conti, M., and Gregori, E. 2005. Mesh networks: Commodity multihop ad hoc networks. IEEE Comm. Mag. 43, 123--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Calamoneri, T., Clementi, A. E., Fusco, E. G., and Silvestri, R. 2011. Maximizing the number of broadcast operations in random geometric ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 22, 208--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cao, M., Ma, W., Zhang, Q., and Wang, X. 2007. Analysis of ieee 802.16 mesh mode scheduler performance. IEEE Trans. Wirel. Comm. 6, 1455--1464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cao, M., Ma, W., Zhang, Q., Wang, X., and Zhu, W. 2005. Modelling and performance analysis of the distributed scheduler in ieee 802.16 mesh mode. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'05). ACM Press, New York, 78--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chebrolu, K. and Raman, B. 2007. FRACTEL: A fresh perspective on (rural) mesh networks. In Proceedings of the ACM Workshop on Networked Systems for Developing Regions (NSDR'07). ACM Press, New York, 8:1--8:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cheng, H., Xiong, N., and Yang, L. 2008. Distributed access scheduling algorithms in wireless mesh networks. In Proceedings of the IEEE Conference on Advanced Information Networking and Applications (AINA'08). 509--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chlamtac, I., Conti, M., and Liu, J. J. N. 2003. Mobile ad hoc networking: Imperatives and challenges. Ad Hoc Netw. 1, 13--64.Google ScholarGoogle ScholarCross RefCross Ref
  17. Chlamtac, I., Petrioli, C., and Redi, J. 1997a. An energy-conserving access protocol for wireless communication. In Proceedings of the IEEE International Conference on Communications (ICC'97). Vol. 2. 1059--1062.Google ScholarGoogle Scholar
  18. Chlamtac, I., Petrioli, C., and Redi, J. 1997b. Extensions to the pseudo-random class of energy conserving access protocols. In Proceedings of the IEEE International Workshop on Factory Communication Systems. 11--16.Google ScholarGoogle Scholar
  19. Chlamtac, I. and Pinter, S. S. 1987. Distributed nodes organization algorithm for channel access in a multihop dynamic radio network. IEEE Trans. Comput. C-36, 728--737. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chockalingam, A. and Zorzi, M. 1998. Energy efficiency of media access protocols for mobile data networks. IEEE Trans. Comm. 46, 1418--1421.Google ScholarGoogle ScholarCross RefCross Ref
  21. Cicconetti, C., Akyildiz, I. F., and Lenzini, L. 2007a. Bandwidth balancing in multi-channel IEEE 802.16 wireless mesh networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM'07). 2108--2116.Google ScholarGoogle Scholar
  22. Cicconetti, C., Akyildiz, I. F., and Lenzini, L. 2009. FEBA: A bandwidth allocation algorithm for service differentiation in IEEE 802.16 mesh networks. IEEE/ACM Trans. Netw. 17, 884--897. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Cicconetti, C., Erta, A., Lenzini, L., and Mingozzi, E. 2007b. Performance evaluation of the mesh election procedure of ieee 802.16/wimax. In Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM'07). ACM Press, New York, 323--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Cidon, I. and Sidi, M. 1989. Distributed assignment algorithms for multihop packet radio networks. IEEE Trans. Comput. 38, 10, 1353--1361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Corson, S. and Macker, J. 1999. Request for comments (rfcs) 2501: Mobile ad hoc networking (manet) routing protocol performance issues and evaluation considerations. IETF Mobile Ad Hoc Networking (MANet) Working Group. 1--8. http://www.ietf.org/rfc/rfc2501.txt. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Cunningham, R. and Cahill, V. 2002. Time bounded medium access control for ad hoc networks. In Proceedings of the ACM Workshop on Principles of Mobile Computing (POMC'02). ACM Press, New York, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Djukic, P. and Valaee, S. 2007. Distributed link scheduling for tdma mesh networks. In Proceedings of the IEEE International Conference on Communications (ICC'07). 3823--3828.Google ScholarGoogle Scholar
  28. Erwu, L., Dongyao, W., Jimin, L., Gang, S., and Shan, J. 2007. Performance evaluation of bandwidth allocation in 802.16j mobile multi-hop relay networks. In Proceedings of the IEEE 65th Vehicular Technology Conference (VTC'07). 939--943.Google ScholarGoogle Scholar
  29. Fallahi, A., Hossain, E., and Alfa, A. 2006. Qos and energy trade off in distributed energy-limited mesh/relay networks: A queuing analysis. IEEE Trans. Parallel Distrib. Syst. 17, 6, 576--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. FCC. 2011. FCC online table of frequency allocations. The Federal Communications Commission (FCC). www.fcc.gov/oet/spectrum/table/fcctable.pdf.Google ScholarGoogle Scholar
  31. Gabale, V., Raman, B., Chebrolu, K., and Kulkarni, P. 2010. LiT mac: Addressing the challenges of effective voice communication in a low cost, low power wireless mesh network. In Proceedings of the 1st ACM Symposium on Computing for Development (ACM/DEV'10). ACM Press, New York, 5:1--5:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Gastpar, M. and Vetterli, M. 2002. On the capacity of wireless networks: The relay case. In Proceedings of the IEEE 21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'02). 1577--1586.Google ScholarGoogle Scholar
  33. Ghosh, D., Gupta, A., and Mohapatra, P. 2008. Scheduling in multihop wimax networks. SIGMOBILE Mob. Comput. Comm. Rev. 12, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Gronkvist, J., Nilsson, J., and Yuan, D. 2004. Throughput of optimal spatial reuse tdma for wireless ad-hoc networks. In Proceedings of the IEEE 59th Vehicular Technology Conference (VTC'04). Vol. 4. 2156--2160.Google ScholarGoogle Scholar
  35. Gupta, P. and Kumar, P. R. 2000. The capacity of wireless networks. IEEE Trans. Inf. Theory 46, 388--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Hai-Tao, W. and Yue, Z. 2011. Channel assignment and routing scheduling in wireless mesh networks. In Proceedings of the 4th International Conference on Intelligent Computation Technology and Automation (ICICTA'11). Vol. 2. 1074--1077. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. He, J., Yang, K., Guild, K., and Chen, H.-H. 2007. Application of ieee 802.16 mesh networks as the backhaul of multihop cellular networks. IEEE Comm. Mag. 45, 82--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Hiertz, G. R., Denteneer, D., Max, S., Cardona, R. T. J., and Walke, L. B. B. 2010. IEEE 802.11s: The wlan mesh standard. IEEE Wirel. Comm. 17, 104--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Hong, X., Gu, B., Hoque, M., and Tang, L. 2010. Exploring multiple radios and multiple channels in wireless mesh networks. IEEE Wirel. Comm. 17, 76--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. IEEE 802.11 Task Group N. 2009. IEEE standard for lan and man. Part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications. Amendment 5: Enhancements for Higher Throughput.Google ScholarGoogle Scholar
  41. IEEE 802.11 Task Group Y. 2008. IEEE standard for LAN and MAN. part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 3: 3650--3700 MHz Operation in USA.Google ScholarGoogle Scholar
  42. IEEE 802.11 Working Group. 2012. IEEE standard for information technology telecommunications and information exchange between systems local and metropolitan area networks specific requirements. part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.Google ScholarGoogle Scholar
  43. IEEE 802.15 Mesh Networking Task Group. 2009. IEEE standard for LAN and MAN. Part 15.5: Mesh topology capability in wireless personal area networks (WPANs).Google ScholarGoogle Scholar
  44. IEEE 802.16 Relay Task Group. 2009. IEEE standard for LAN and MAN. Part 16: Air interface for fixed broadband wireless access systems. Amendment 1: Multihop Relay Specification.Google ScholarGoogle Scholar
  45. IEEE 802.16 Working Group. 2004. IEEE standard for LAN and MAN. Part 16: Air interface for fixed broadband wireless access systems.Google ScholarGoogle Scholar
  46. IEEE 802.16 Working Group. 2009. IEEE standard for LAN and MAN. Part 16: Air interface for fixed broadband wireless access systems.Google ScholarGoogle Scholar
  47. IEEE 802.20 Mobile Broadband Wireless Access (Mbwa) Working Group. 2008. IEEE standard for LAN and MAN. Part 20: Air interface for mobile broadband wireless access systems supporting vehicular mobility physical and media access control layer specification.Google ScholarGoogle Scholar
  48. IEEE 802.22 Working Group on Wireless Regional Area Networks (Wrans). 2011. IEEE standard for wireless regional area networks (wran) specific requirements: Part 22: Cognitive wireless ran medium access control (mac) and physical layer (phy) specifications: Policies and procedures for operation in the tv bands.Google ScholarGoogle Scholar
  49. IETF. 2012. Request for comments (RFCs) on mobile ad-hoc networks (manet). The Internet Engineering Task Force. ietf.org/wg/manet/.Google ScholarGoogle Scholar
  50. Jayachandran, P. and Andrews, M. 2010. Minimizing end-to-end delay in wireless networks using a coordinated edf schedule. In Proceedings of the IEEE Computer and Communications Societies (INFOCOM'10). 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ju, J.-H. and Li, V. O. K. 1998. An optimal topology-transparent scheduling method in multihop packet radio networks. IEEE/ACM Trans. Netw. 6, 298--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kapoor, A. and Ribeiro, V. J. 2010. An end-to-end qos aware greedy distributed scheduling framework for wimax mesh networks. In Proceedings of the IEEE Conference on Communication Systems and Networks (COMSNETS'10). 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Karn, P. 1990. MACA - A new channel access method for packet radio. In Proceedings of the 9th Amateur Radio Computer Networking Conference (ARRL/CRRL'90). ARRL/CRRL, 134--140.Google ScholarGoogle Scholar
  54. Kas, M., Yargicoglu, B., Korpeoglu, I., and Karasan, E. 2010. A survey on scheduling in ieee 802.16 mesh mode. IEEE Comm. Surv. Tutorials 12, 205--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Khorov, E., Lyakhov, A., and Safonov, A. 2011. Flexibility of routing framework architecture in IEEE 802.11s mesh networks. In Proceedings of the IEEE Conference on Mobile Adhoc and Sensor Systems (MASS'11). 777--782. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Kim, B. C., Song, H., Lee, H. S., and Ma, J. S. 2009. Performance evaluation of backoff algorithms in multi-hop wireless mesh networks. In Proceedings of the IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'09). 347--1351.Google ScholarGoogle Scholar
  57. Kumar, S., Raghavan, V. S., and Deng, J. 2006. Medium access control protocols for ad hoc wireless networks: A survey. Ad Hoc Netw. 4, 326--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Kyasanur, P., So, J., Chereddi, C., and Vaidya, N. H. 2006. Multichannel mesh networks: Challenges and protocols. IEEE Wirel. Comm. 13, 30--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Kyasanur, P. and Vaidya, N. H. 2005. Selfish mac layer misbehavior in wireless networks. IEEE Trans. Mob. Comput. 4, 5, 502--516. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Lee, J., Yoon, H., and Yeom, I. 2010. Distributed fair scheduling for wireless mesh networks using IEEE 802.11. IEEE Trans. Vehicular Technol. 59, 4467--4475.Google ScholarGoogle ScholarCross RefCross Ref
  61. Marina, M. K., Kondylis, G. D., and Kozat, U. C. 2001. RBRP: A robust broadcast reservation protocol for mobile ad hoc networks. In Proceedings of the IEEE International Conference on Communications (ICC'01). 878--885.Google ScholarGoogle Scholar
  62. Max, S., Weiss, E., and Hiertz, G. R. 2007. Benefits and limitations of spatial reuse in wireless mesh networks. In Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM'07). ACM Press, New York, 244--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Mo, J., So, H.-S., and Walrand, J. 2008. Comparison of multichannel mac protocols. IEEE Trans. Mob. Comput. 7, 1, 50--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Mogre, P. S., Hollick, M., Steinmetz, R., Dadia, V., and Sengupta, S. 2009. Distributed bandwidth reservation strategies to support efficient bandwidth utilization and qos on a per-link basis in ieee 802.16 mesh networks. In Proceedings of the 34th IEEE Conference on Local Computer Networks (LCN'09). 301--304.Google ScholarGoogle Scholar
  65. Nieminen, J., Paloheimo, H., and Jantti, R. 2010. Energy-adaptive scheduling and queue management in wireless LAN mesh networks. In Proceedings of the 5th IEEE Annual ICST Wireless Internet Conference (WICON'10). 1--9.Google ScholarGoogle Scholar
  66. Park, D. C., Yun, S. S., Kim, S. C., Shin, W., Kim, H., and Lim, K. 2011. Distributed data scheduling for ofdma-based wireless mesh networks. In Proceedings of the Military Communications Conference (MILCOM'11). 872--877.Google ScholarGoogle Scholar
  67. Patra, R., Nedevschi, S., Surana, S., Sheth, A., Subramanian, L., and Brewer, E. 2007. An adaptive, high performance mac for long-distance multihop wireless networks. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI'07). 87--100.Google ScholarGoogle Scholar
  68. Peters, S. W. and Heath, R. W. 2009. The future of wimax: Multihop relaying with ieee 802.16j. IEEE Comm. Mag. 47, 104--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Qiao, D., Choi, S., Jain, A., and Shin, K. G. 2003. Miser: An optimal low-energy transmission strategy for ieee 802.11a/h. In Proceedings of the ACM Conference on Mobile Computing and Networking (MobiCom'03). ACM Press, New York, 161--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Raisanen, A. V. and Lehto, A. 2003. Radio Engineering for Wireless Communication and Sensor Applications. Artech House, London, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Ramanathan, S. 1997. A unified framework and algorithm for (t/f/c) dma channel assignment in wireless networks. In Proceedings of the 16th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'97). 900--907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Ramanathan, S. and Lloyd, E. L. 1993. Scheduling algorithms for multihop radio networks. IEEE/ACM Trans. Netw. 1, 166--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Raniwala, A. and Chiueh, T. 2005. Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'05). 2223--2234.Google ScholarGoogle Scholar
  74. Rhee, I., Warrier, A., Min, J., and Xu, L. 2009. DRAND: Distributed randomized tdma scheduling for wireless ad hoc networks. IEEE Trans. Mob. Comput. 8, 1384--1396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Rozovsky, R. and Kumar, P. R. 2001. SEEDEX: A mac protocol for ad hoc networks. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'01). ACM Press, New York, 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Salonidis, T. and Tassiulas, L. 2005. Distributed dynamic scheduling for end-to-end rate guarantees in wireless ad hoc networks. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'05). Vol. 4. 145--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Sengupta, S., Chatterjee, M., and Chandramouli, R. 2008. A coordinated distributed scheme for cognitive radio based IEEE 802.22 wireless mesh networks. In Proceedings of the IEEE International Conference on Communications (ICC'08). 461--465.Google ScholarGoogle Scholar
  78. Sharma, G., Shroff, N. B., and Mazumdar, R. R. 2006. Hybrid sensor and mesh networks: Paradigms for fair and energy efficient communication. In Proceedings of the 2nd IEEE Workshop on Wireless Mesh Networks (WiMesh'10). 83--92.Google ScholarGoogle Scholar
  79. So, J. and Vaidya, N. H. 2004. Multi-channel mac for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'04). ACM Press, New York, 222--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Stine, J. A. 2005. Spectrum management: The killer application of ad hoc and mesh networking. In Proceedings of the IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN'05). 184--193.Google ScholarGoogle ScholarCross RefCross Ref
  81. Tan, K., Wu, D., Chan, A. J., and Mohapatra, P. 2010. Comparing simulation tools and experimental testbeds for wireless mesh networks. In Proceedings of the IEEE Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM'10). 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Teng, D., Yang, S., He, W., and Hu, Y. 2008. TEOS: A throughput-efficiency optimal distributed data subframe scheduling scheme in wimax mesh networks. In Proceedings of the IEEE Conference on Wireless Communications, Networking and Mobile Computing (WiCOM'08). 1--4.Google ScholarGoogle Scholar
  83. Vijayalayan, K. S., Harwood, A., and Karunasekera, S. 2010. Fast channel establishment for IEEE 802.16 wireless mesh networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM'10).Google ScholarGoogle Scholar
  84. Wang, S.-Y., Lin, C.-C., Chu, H.-W., Hsu, T.-W., and Fang, K.-H. 2008a. Improving the performances of distributed coordinated scheduling in IEEE 802.16 mesh networks. IEEE Trans. Vehicular Technol. 57, 2531--2547.Google ScholarGoogle ScholarCross RefCross Ref
  85. Wang, S.-Y., Lin, C.-C., and Fang, K.-H. 2008b. Improving the data scheduling efficiency of the ieee 802.16(d) mesh network. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'08). 1--5.Google ScholarGoogle Scholar
  86. Wang, S.-Y., Lin, C.-C., Fang, K.-H., and Hsu, T.-W. 2007. Facilitating the network entry and link establishment processes of ieee 802.16 mesh networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC'07). 844--1849.Google ScholarGoogle Scholar
  87. Wei, H.-Y., Ganguly, S., Izmailov, R., and Haas, Z. 2005. Interference-aware IEEE 802.16 wimax mesh networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC'05). Vol. 5, 3102--3106.Google ScholarGoogle Scholar
  88. Wu, S.-L., Lin, C.-Y., Tseng, Y.-C., and Sheu, J.-L. 2000. A new multi-channel mac protocol with on-demand channel assignment for multi-hop mobile ad hoc networks. In Proceedings of the IEEE Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN'00). 232--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Wu, X., Srikant, R., and Perkins, J. R. 2007. Scheduling efficiency of distributed greedy scheduling algorithms in wireless networks. IEEE Trans. Mob. Comput. 6, 595--605. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Xu, K., Gerla, M., and Bae, S. 2002. How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'02). 72--76.Google ScholarGoogle Scholar
  91. Xuekang, S., Li, G., Jin, L., and Xuerong, G. 2009. Differentiated service based cross-layer coordinated distributed scheduling algorithm for wmn. In Proceedings of the IEEE Conference on Multimedia Information Networking and Security (MINES'09). 213--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Yi, Y., Proutiere, A., and Chiang, M. 2008. Complexity in wireless scheduling: Impact and tradeoffs. In Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'08). ACM Press, New York, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Yip, S.-C., Tan, S.-W., and Chuah, T.-C. 2011. Data rate-aware channel assignment algorithm for multirate multi-channel wireless mesh networks. In Proceedings of the 6th International Symposium on Wireless and Pervasive Computing (ISWPC'11). 1--6.Google ScholarGoogle Scholar
  94. Zhang, Y., Gao, X., and You, X. 2008. The IEEE 802.16 mesh mode coordinated distributed scheduling can be collision free. IEEE Trans. Wirel. Comm. 7, 5161--5165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Zhang, Y., Tan, K.-S., Kong, P.-Y., Zheng, J., and Fujise, M. 2007. Wireless Mesh Networking: Architectures, Protocols and Standards. Wireless Networks and Mobile Communications Series, Auerbach Publications.Google ScholarGoogle Scholar
  96. Zhou, P., Wang, X., and Rao, R. 2008. Asymptotic capacity of infrastructure wireless mesh networks. IEEE Trans. Mob. Comput. 7, 1011--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Zhu, C. and Corson, M. S. 1998. A five-phase reservation protocol (fprp) for mobile ad hoc networks. In Proceedings of the 17th IEEE Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'98). 322--331.Google ScholarGoogle Scholar
  98. Zhu, H., Tang, Y., and Chlamtac, I. 2008. Unified collision-free coordinated distributed scheduling (cf-cds) in ieee 802.16 mesh networks. IEEE Trans.Wirel. Comm. 7, 3889--3903. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed scheduling schemes for wireless mesh networks: A survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 46, Issue 1
          October 2013
          551 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/2522968
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2013
          • Revised: 1 January 2013
          • Accepted: 1 January 2013
          • Received: 1 April 2012
          Published in csur Volume 46, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader