skip to main content
research-article

Improving wireless link simulation using multilevel markov models

Published:06 December 2013Publication History
Skip Abstract Section

Abstract

Modeling the behavior of 802.15.4 links is a nontrivial problem, because 802.15.4 links experience different level of dynamics at short and long time scales. This makes the design of a suitable model that combines the different dynamics at different time scales a nontrivial problem. We propose a novel multilevel approach, the M&M model, involving hidden Markov models (HMMs) and mixtures of multivariate Bernoullis (MMBs) for modeling the long and short time-scale behavior of wireless links from 802.15.4 test beds. We characterize the synthetic traces generated from our model of the wireless link in terms of the mean and variance of the packet reception rates from the data traces, comparison of distributions of run lengths, and conditional packet delivery functions of successive packet receptions (1's) and losses (0's). Our results show that when compared to the closest-fit pattern matching model in TOSSIM, the proposed modeling approach is able to mimic the behavior of the data traces quite closely, with differences in packet reception rates of the empirical and simulated traces of less than 1.9%; on average and 6.6% in the worst case. Moreover, the simulated links from our proposed approach were able to account for long runs of 1's and 0's as observed in empirical data traces.

References

  1. Aguayo, D., Bicket, J., Biswas, S., Judd, G., and Morris, R. 2004. Link-level measurements from an 802.11b mesh network. SIGCOMM Comput. Commun. Rev. 34, 4, 121--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alizai, M. H., Landsiedel, O., Ágila Bitsch Link, J., Götz, S., and Wehrle, K. 2009. Bursty traffic over bursty links. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys'09). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Stat. 41, 1, 164--171.Google ScholarGoogle ScholarCross RefCross Ref
  4. Becher, A., Landsiedel, O., Kunz, G., and Wehrle, K. 2008. Towards short-term wireless link quality estimation. In Proceedings of the 5th ACM Workshop on Embedded Networked Sensors (HotEmNetS'08).Google ScholarGoogle Scholar
  5. Bilmes, J. 1997. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Tech. rep. TR-97-021, International Computer Science Institute.Google ScholarGoogle Scholar
  6. Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Carreira-Perpiñán, M. Á. and Renals, S. 2000. Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Comput. 12, 1, 141--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cerpa, A., Busek, N., and Estrin, D. 2003. SCALE: A tool for simple connectivity assessment in lossy environments. Tech. rep. 0021, University of California, Los Angeles.Google ScholarGoogle Scholar
  9. Cerpa, A., Wong, J., Kuang, L., Potkonjak, M., and Estrin, D. 2005a. Statistical model of lossy links in wireless sensor networks. In Proceedings of IEEE IPSN'05. 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cerpa, A., Wong, J., Potkonjak, M., and Estrin, D. 2005. Temporal properties of low power wireless links: Modeling and implications on multi-hop routing. In Proceedings of ACM MobiHoc'05. 414--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chen, Y. and Terzis, A. 2010. On the mechanisms and effects of calibrating RSSI measurements for 802.15.4 radios. In Wireless Sensor Networks. Lecture Notes in Computer Science, vol. 5970, 256--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Elliot, E. O. 1965. A model of the switched telephone network for data communications. Bell Syst. Tech. J. 4, 1, 89--109.Google ScholarGoogle ScholarCross RefCross Ref
  13. Forney JR., G. D. 1973. The viterbi algorithm. Proc. IEEE 61, 3, 268--278.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gilbert, E. N. 1960. Capacity of a burst-noise channel. Bell Syst. Tech. J. 39, 1253--1266.Google ScholarGoogle ScholarCross RefCross Ref
  15. Girod, L., Elson, J., Cerpa, A., Stathopoulos, T., Ramanathan, N., and Estrin, D. 2004. Emstar: A software environment for developing and deploying wireless sensor networks. In Proceedings of the Annual USENIX Technical Conference (USENIX'04). 283--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kamthe, A. 2009. M&M simulator for TOSSIM. http://www.andes.ucmerced.edu/software.Google ScholarGoogle Scholar
  17. Kamthe, A., Carreira-Perpiñán, M. Á, and Cerpa, A. 2011. Adaptation of a mixture of multivariate bernoulli distributions. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI'11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kamthe, A., Carreira-Perpiñán, M. A., and Cerpa, A. E. 2009. M&M: Multi-level Markov model for wireless link simulations. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys'09). ACM, New York, NY, 57--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kashyap, A., Ganguly, S., and Das, S. R. 2008. Measurement-based approaches for accurate simulation of 802.11-based wireless networks. In Proceedings of the 11th International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM'08). ACM, New York, NY, 54--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Khayam, S. A. and Radha, H. 2003. Markov-based modeling of wireless local area networks. In Proceedings of the 6th International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM'03). 100--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Konrad, A., Zhao, B., Joseph, A., and Ludwig, R. 2001. A Markov-based channel model algorithm for wireless networks. In Proceedings of the 4th International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM'01). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Konrad, A., Zhao, B. Y., and Joseph, A. D. 2006. Determining model accuracy of network traces. J. Comput. Syst. Sci. 72, 7, 1156--1171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., and Elliott, C. 2004. Experimental evaluation of wireless simulation assumptions. In Proceedings of the 7th International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM'04). 78--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kullback, S. and Leibler, R. A. 1951. On information and sufficiency. Ann. Math. Stat. 22, 1, 79--86.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lee, H., Cerpa, A., and Levis, P. 2007. Improving wireless simulation through noise modeling. In Proceedings of ACM IPSN'07. 368--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lenders, V. and Martonosi, M. 2009. Repeatable and realistic experimentation in mobile wireless networks. IEEE Trans. Mobile Comput. 8, 1718--1728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Levis, P. and Lee, N. 2003. TOSSIM: A simulator for tinyOS networks - user manual. http://www.cs.berkeley.edu/ pal.pubs/nido.pdf.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. TOSSIM: Accurate and scalable simulation of entire tinyOS applications. In Proceedings of SenSys'03. 126--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J. A., and He, T. 2006. ATPC: Adaptive transmission power control for wireless sensor networks. In Proceedings of SenSys'06. 223--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Metcalf, C. 2007. TOSSIM live: Towards a testbed in a thread Master's Thesis, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO.Google ScholarGoogle Scholar
  31. Meyer, C. 2001. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Nguyen, G. T., Katz, R. H., Noble, B., and Satyanarayanan, M. 1996. A trace-based approach for modeling wireless channel behavior. In Proceedings of the Winter Simulation Conference. 597--604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pawlikowski, K., Jeong, H.-D. J., and Lee, J.-S. R. 2002. On credibility of simulation studies of telecommunication networks. IEEE Commun. Mag. 40, 1, 132--139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Raman, B., Chebrolu, K., Gokhale, D., and Sen, S. 2009. On the feasibility of the link abstraction in wireless mesh networks. ACM Trans. Netw. 17, 2, 528--541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rappaport, T. 2001. Wireless Communications: Principles and Practice. Prentice Hall, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Reddy, D. and Riley, G. 2007. Measurement based physical layer modeling for wireless network simulations. In Proceedings of the International Symposium on Modeling, Analysis, and Simulation of Computer Systems. 46--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Reis, C., Mahajan, R., Rodrig, M., Wetherall, D., and Zahorjan, J. 2006. Measurement-based models of delivery and interference in static wireless networks. SIGCOMM Comput. Commun. Rev. 36, 4, 51--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rubner, Y., Tomasi, C., and Guibas, L. J. 2000. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision 40, 2, 99--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rusak, T. and Levis, P. 2009. Burstiness and scaling in the structure of low-power wireless links. SIGMOBILE Mob. Comput. Commun. Rev. 13, 1, 60--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rusak, T. and Levis, P. A. 2008. Investigating a physically-based signal power model for robust low power wireless link simulation. In Proceedings of the International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM'08). 37--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Salamatian, K. and Vaton, S. 2001. Hidden Markov modeling for network communication channels. SIGMETRICS Perform. Eval. Rev. 29, 1, 92--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Srinivasan, K., Dutta, P., Tavakoli, A., and Levis, P. 2006. Some implications of low power wireless to IP networking. In Proceedings of the ACM HotNets Conference. 31--37.Google ScholarGoogle Scholar
  43. Srinivasan, K., Dutta, P., Tavakoli, A., and Levis, P. 2010. An empirical study of low-power wireless. ACM Trans. Sen. Netw. 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Srinivasan, K., Kazandjieva, M. A., Agarwal, S., and Levis, P. 2008. The β-factor: Measuring wireless link burstiness. In Proceedings of SenSys'08. 29--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Towsley, D., Yajnik, M., Moon, S. B., and Kurose, J. 1999. Measurement and modeling of the temporal dependence in packet loss. In Proceedings of IEEE INFOCOM'99.Google ScholarGoogle Scholar
  46. Werner-Allen, G., Swieskowski, P., and Welsh, M. 2005. Motelab: A wireless sensor network testbed. In Proceedings of IPSN'05. 68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zhao, J. and Govindan, R. 2003. Understanding packet delivery performance in dense wireless sensor networks. In Proceedings of SenSys'03. 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zuniga, M. and Krishnamachari, B. 2004. Analyzing the transitional region in low power wireless links. In Proceedings of SECON'04. 517--526.Google ScholarGoogle Scholar

Index Terms

  1. Improving wireless link simulation using multilevel markov models

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Sensor Networks
          ACM Transactions on Sensor Networks  Volume 10, Issue 1
          November 2013
          559 pages
          ISSN:1550-4859
          EISSN:1550-4867
          DOI:10.1145/2555947
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 December 2013
          • Accepted: 1 September 2012
          • Revised: 1 March 2012
          • Received: 1 May 2011
          Published in tosn Volume 10, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader