skip to main content
10.1145/2559636.2559674acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
research-article

Familiarization to robot motion

Published:03 March 2014Publication History

ABSTRACT

We study the effect of familiarization on the predictability of robot motion. Predictable motion is motion that matches the observer's expectation. Because of the difficulty robots have in learning motion from user demonstrations, we explore the idea of having users learn from robot demonstrations --- how accurate do users get at predicting how the robot will move? We find that although familiarization significantly increases predictability, its utility depends on how natural the motion is. Overall, familiarization shows great promise, but needs to be combined with other methods that generate appropriate motion with which to be familiarized.

References

  1. B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories and keyframes for kinesthetic teaching: a human-robot interaction perspective. In HRI, pages 391--398, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila, A. D. Luca, A. D. Santis, G. Giralt, J. Guiochet, G. Hirzinger, F. Ingrand, V. Lippiello, R. Mattone, D. Powell, S. Sen, B. Siciliano, G. Tonietti, and L. Villani. Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains: State of the Art and Challenges. In Workshop on HRI, 2006.Google ScholarGoogle Scholar
  3. A. Arita, K. Hiraki, T. Kanda, and H. Ishiguro. Can we talk to robots? ten-month-old infants expected interactive humanoid robots to be talked to by persons. Cognition, 95(3):B49--B57, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Beetz, F. Stulp, P. Esden-Tempski, A. Fedrizzi, U. Klank, I. Kresse, A. Maldonado, and F. Ruiz. Generality and legibility in mobile manipulation. Autonomous Robots, 28:21--44, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour. An integrated approach to inverse kinematics and path planning for redundant manipulators. In ICRA, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Calinon, F. Guenter, and A. Billard. On learning, representing, and generalizing a task in a humanoid robot. IEEE Trans. on Systems, Man, and Cybernetics, 37(2):286--298, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. B. D'AGOSTINO. A second look at analysis of variance on dichotomous data. Journal of Educational Measurement, 8(4):327--333, 1971.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. Desai, M. Medvedev, M. Vázquez, S. McSheehy, S. Gadea-Omelchenko, C. Bruggeman, A. Steinfeld, and H. Yanco. Effects of changing reliability on trust of robot systems. In Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference on, pages 73--80. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Dragan, K. Lee, and S. Srinivasa. Legibility and predictability of robot motion. In HRI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. G. Gergely, Z. Nadasdy, G. Csibra, and S. Biro. Taking the intentional stance at 12 months of age. Cognition, 56(2):165--193, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. Huang, Z. Li, M. Li, D. G. Chetwynd, and C. M. Gosselin. Conceptual design and dimensional synthesis of a novel 2-dof translational parallel robot for pick-and-place operations. Journal of Mechanical Design, 126:449, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  12. K. Kamewari, M. Kato, T. Kanda, H. Ishiguro, and K. Hiraki. Six-and-a-half-month-old children positively attribute goals to human action and to humanoid-robot motion. Cognitive Development, 20(2):303--320, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  13. C. D. Kidd and C. Breazeal. Human-robot interaction experiments: Lessons learned. In Proceeding of AISB, volume 5, pages 141--142, 2005.Google ScholarGoogle Scholar
  14. T. Komatsu and S. Yamada. Adaptation gap hypothesis: How differences between users' expected and perceived agent functions affect their subjective impression. Journal of Systemics, Cybernetics and Informatics, 9(1):67--74, 2011.Google ScholarGoogle Scholar
  15. F. Lacquaniti and J. Soechting. Coordination of arm and wrist motion during a reaching task. J Neurosci., 2:399--408, April 1982.Google ScholarGoogle ScholarCross RefCross Ref
  16. D. P. Miller. Assistive robotics: an overview. In Assistive Technology and Artificial Intelligence, pages 126--136. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Mitchell and F. Myles. Second language learning theories. 2004.Google ScholarGoogle Scholar
  18. B. Mutlu and J. Forlizzi. Robots in organizations: the role of workflow, social, and environmental factors in human-robot interaction. In HRI, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In ICML, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Schaal. Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In Adaptive Motion of Animals and Machines, pages 261--280. 2006.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. M. Siino and P. J. Hinds. Robots, gender & sensemaking: Sex segregation's impact on workers making sense of a mobile autonomous robot. In ICRA, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M. Dogar, A. Dragan, R. Knepper, T. Niemueller, K. Strabala, M. V. Weghe, and J. Ziegler. Herb 2.0: Lessons learned from developing a mobile manipulator for the home. Proc. of the IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  23. K. Stubbs, D. Wettergreen, and I. Nourbakhsh. Using a robot proxy to create common ground in exploration tasks. In HRI, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. K. Sundin, L. Jansson, and A. Norberg. Communicating with people with stroke and aphasia: understanding through sensation without words. Journal of clinical nursing, 9(4):481--488, 2000.Google ScholarGoogle Scholar
  25. A. L. Thomaz and M. Cakmak. Learning about objects with human teachers. In HRI, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Upson. tongue vision. Spectrum, IEEE, 44(1):44--45, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. E. Weick. Sensemaking in organizations, volume 3. 1995.Google ScholarGoogle Scholar
  28. B. D. Ziebart, A. Maas, J. A. Bagnell, and A. Dey. Maximum entropy inverse reinforcement learning. In AAAI, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A. D. Bagnell, and S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning. IJRR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Familiarization to robot motion

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HRI '14: Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction
          March 2014
          538 pages
          ISBN:9781450326582
          DOI:10.1145/2559636

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 March 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          HRI '14 Paper Acceptance Rate32of132submissions,24%Overall Acceptance Rate242of1,000submissions,24%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader