skip to main content
10.1145/2582112.2582159acmotherconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
tutorial

Peeling Potatoes Near-Optimally in Near-Linear Time

Authors Info & Claims
Published:08 June 2014Publication History

ABSTRACT

We consider the following geometric optimization problem: find a convex polygon of maximum area contained in a given simple polygon P with n vertices. We give a randomized near-linear-time (1 − ϵ)-approximation algorithm for this problem: in O((n/ϵ6) log2 n log(1/δ)) time we find a convex polygon contained in P that, with probability at least 1 − δ, has area at least (1 − ϵ) times the area of an optimal solution.

References

  1. P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric optimization problems. Discrete & Computational Geometry, 16(4):317--337, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric optimization. J. Algorithms, 17(3):292--318, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Aronov, M. J. van Kreveld, M. Löffler, and R. I. Silveira. Peeling meshed potatoes. Algorithmica, 60(2):349--367, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Baddeley, I. Bárány, R. Schneider, and W. Weil. Stochastic Geometry, volume 1892 of Lecture notes in mathematics. Springer, 2007.Google ScholarGoogle Scholar
  5. I. Bárány. Random points and lattice points in convex bodies. Bull. Amer. Math. Soc. (N.S.), 45(3):339--365, 2008.Google ScholarGoogle Scholar
  6. I. Bárány and D. G. Larman. Convex bodies, economic cap coverings, random polytopes. Mathematika, 35:274--291, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  7. C. Bautista-Santiago, J. M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, and I. Ventura. Computing optimal islands. Oper. Res. Lett., 39(4):246--251, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. B. Ben-Moshe, O. A. Hall-Holt, M. J. Katz, and J. S. B. Mitchell. Computing the visibility graph of points within a polygon. In J. Snoeyink and J.-D. Boissonnat, editors, Proc. 20th ACM Symposium on Computational Geometry, pages 27--35, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Bose, J. Czyzowicz, E. Kranakis, D. Krizanc, and A. Maheshwari. Polygon cutting: Revisited. In J. Akiyama, M. Kano, and M. Urabe, editors, Discrete and Computational Geometry, volume 1763 of Lecture Notes in Computer Science, pages 81--92. Springer Berlin Heidelberg, 2000. Google ScholarGoogle ScholarCross RefCross Ref
  10. J.-S. Chang and C.-K. Yap. A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1:155--182, 1986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational Geometry, 6(1):485--524, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12(1):54--68, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  13. B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76--90, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. Chazelle and M. Sharir. An algorithm for generalized point location and its applications. J. Symb. Comput., 10(3/4):281--310, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. O. Cheong, A. Efrat, and S. Har-Peled. Finding a guard that sees most and a shop that sells most. Discrete & Computational Geometry, 37(4):545--563, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Daniels, V. Milenkovic, and D. Roth. Finding the largest area axis-parallel rectangle in a polygon. Comput. Geom., 7(1--2):125--148, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. DePano, Y. Ke, and J. O'Rourke. Finding largest inscribed equilateral triangles and squares. In Proc. 25th Allerton Conf. Commun. Control Comput., pages 869--878, 1987.Google ScholarGoogle Scholar
  18. A. Dumitrescu, S. Har-Peled, and Cs. D. Tóth. Minimum convex partitions and maximum empty polytopes. In F. V. Fomin and P. Kaski, editors, SWAT, volume 7357 of Lecture Notes in Computer Science, pages 213--224. Springer, 2012. See http://arxiv.org/abs/1112. 1124 for a longer version. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput., 15(2):341--363, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Efron. The convex hull of a random set of points. Biometrika, 52:331--343, 1965.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. Fischer. Sequential and parallel algorithms for finding a maximum convex polygon. Comput. Geom., 7(3):187--200, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. E. Goodman. On the largest convex polygon contained in a non-convex n-gon, or how to peel a potato. Geometriae Dedicata, 11(1):99--106, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  23. H. Groemer. On the mean value of the volume of a random polytope in a convex set. Archiv der Mathematik, 25:86--90, 1974.Google ScholarGoogle ScholarCross RefCross Ref
  24. O. A. Hall-Holt, M. J. Katz, P. Kumar, J. S. B. Mitchell, and A. Sityon. Finding large sticks and potatoes in polygons. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 474--483, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. T. Lee and Y. T. Ching. The power of geometric duality revisited. Inform. Process. Lett., 21(3):117--122, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  26. E. A. Melissaratos and D. L. Souvaine. Shortest paths help solve geometric optimization problems in planar regions. SIAM J. Comput., 21(4):601--638, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2:75--84, 1963.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. II. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 3:138--147, 1964.Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Rote. The degree of convexity. In S. P. Fekete, editor, Abstracts 29th European Workshop on Computational Geometry, pages 69--72, 2013.Google ScholarGoogle Scholar

Index Terms

  1. Peeling Potatoes Near-Optimally in Near-Linear Time

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SOCG'14: Proceedings of the thirtieth annual symposium on Computational geometry
      June 2014
      588 pages
      ISBN:9781450325943
      DOI:10.1145/2582112

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 June 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      SOCG'14 Paper Acceptance Rate60of175submissions,34%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader