skip to main content
research-article

Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We present a generalized linear light source solution to estimate both the local shading frame and anisotropic surface reflectance of a planar spatially varying material sample.

We generalize linear light source reflectometry by modulating the intensity along the linear light source, and show that a constant and two sinusoidal lighting patterns are sufficient for estimating the local shading frame and anisotropic surface reflectance. We propose a novel reconstruction algorithm based on the key observation that after factoring out the tangent rotation, the anisotropic surface reflectance lies in a low rank subspace. We exploit the differences in tangent rotation between surface points to infer the low rank subspace and fit each surface point's reflectance function in the projected low rank subspace to the observations. We propose two prototype acquisition devices for capturing surface reflectance that differ on whether the camera is fixed with respect to the linear light source or fixed with respect to the material sample.

We demonstrate convincing results obtained from reflectance scans of surfaces with different reflectance and shading frame variations.

Skip Supplemental Material Section

Supplemental Material

a117-sidebyside.mp4

mp4

22.7 MB

References

  1. Aittala, M., Weyrich, T., and Lehtinen, J. 2013. Practical SVBRDF capture in the frequency domain. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alldrin, N., Zickler, T. E., and Kriegman, D. 2008. Photometric stereo with non-parametric and spatially-varying reflectance. In CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ben-Ezra, M., Wang, J., Wilburn, B., Li, X., and Ma, L. 2008. An LED-only BRDF measurement device. In CVPR, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cai, J.-F., Candès, E. J., and Shen, Z. 2010. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. on Optimization 20, 4, 1956--1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cook, R. L., and Torrance, K. E. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dana, K. J., Nayar, S. K., van Ginneken, B., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for svbrdf capture. ACM Trans. Graph. 29, 4, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161--1170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Goldman, D. B., Curless, B., Hertzmann, A., and Seitz, S. M. 2005. Shape and spatially-varying BRDFs from photometric stereo. In ICCV, I: 341--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Han, J. Y., and Perlin, K. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741--748. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Trans. Graph. 27, 5, 133:1--133:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. 1997. Non-linear approximation of reflectance functions. In Proceedings of ACM SIGGRAPH 1997, Annual Conference Series, 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. 2013. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE PAMI 35, 171--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lu, R., Koenderink, J. J., and Kappers, A. M. L. 1998. Optical properties bidirectional reflectance distribution functions of velvet. Applied Optics 37, 25 (Sept.), 5974--5984.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. E. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Rendering Techniques, 183--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marschner, S., Westin, S., Lafortune, E., Torrance, K., and Greenberg, D. 1999. Image-based BRDF measurement including human skin. In 10th Eurographics Rendering Workshop. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic BRDF measurement. In Rendering Techniques, 241--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mukaigawa, Y., sumino, K., and yagi, Y. 2007. High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In ACCV, 246--257.Google ScholarGoogle Scholar
  22. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. Eurographics Symposium on Rendering 2005, 117--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometric considerations and nomenclature for reflectance. Monograph 161,National Bureau of Standards (US).Google ScholarGoogle Scholar
  24. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer Series in Operations Research and Financial Enginee. Springer Science+Business Media, LLC.Google ScholarGoogle Scholar
  25. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. ACM Trans. Graph. 30, 4, 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., and Debevec, P. E. 2013. Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Trans. Graph. 32, 4, 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, J., Zhao, S., Tong, X., Snyder, J., and Guo, B. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph 27, 3, 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics, vol. 26, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zhang, Z. 2000. A flexible new technique for camera calibration. In IEEE PAMI, vol. 22, 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zickler, T., Enrique, S., Ramamoorthi, R., and Belhumeur, P. 2005. Reflectance sharing: image-based rendering from a sparse set of images. In Rendering Techniques, 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reflectance scanning: estimating shading frame and BRDF with generalized linear light sources

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 4
        July 2014
        1366 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2601097
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2014
        Published in tog Volume 33, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader