skip to main content
10.1145/2603088.2603121acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Faster decision of first-order graph properties

Published:14 July 2014Publication History

ABSTRACT

First-order logic captures a vast number of computational problems on graphs. We study the time complexity of deciding graph properties definable by first-order sentences in prenex normal form with k variables. The trivial algorithm for this problem runs in O(nk) time on n-node graphs (the big-O hides the dependence on k).

Answering a question of Miklós Ajtai, we give the first algorithms running faster than the trivial algorithm, in the general case of arbitrary first-order sentences and arbitrary graphs. One algorithm runs in O(nk-3+ω) ≤ O(nk-0.627) time for all k ≥ 3, where ω < 2.373 is the n x n matrix multiplication exponent. By applying fast rectangular matrix multiplication, the algorithm can be improved further to run in nk-1+o(1) time, for all k ≥ 9. Finally, we observe that the exponent of k - 1 is optimal, under the popular hypothesis that CNF satisfiability with n variables and m clauses cannot be solved in (2 - ε)n · poly(m) time for some ε > 0.

References

  1. {AV14} Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. arXiv:1402.0054, 2014.Google ScholarGoogle Scholar
  2. {AVW14} Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment of sequences. In ICALP, to appear, 2014.Google ScholarGoogle Scholar
  3. {CDL+12} Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as CNF-SAT. In IEEE Conference on Computational Complexity, pages 74--84, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {CHKX06} Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346--1367, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {CIP09} Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small depth circuits. In Parameterized and Exact Computation, pages 75--85. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {CKN13} Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases of perfect matchings. In STOC, pages 301--310, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {CNP+11} Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, J. M. M. van Rooij, and J. O. Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In FOCS, pages 150--159, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {Cop97} Don Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13:42--49, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {Cou90} Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12--75, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. {Cyg12} Marek Cygan. Deterministic parameterized connected vertex cover. In Algorithm Theory--SWAT 2012, pages 95--106. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {DF99} Rodney G. Downey and Michael R. Fellows. Springer-Verlag, 1999.Google ScholarGoogle Scholar
  12. {DKT10} Zdenek Dvorak, Daniel Král, and Robin Thomas. Deciding first-order properties for sparse graphs. In FOCS, pages 133--142, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {DW10} Evgeny Dantsin and Alexander Wolpert. On moderately exponential time for SAT. In Proc. 13th International Conference on Theory and Applications of Satisfiability Testing, pages 313--325, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {EG04} Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57--67, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {FG04} Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3--31, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  16. {FG06} Jörg Flum and Martin Grohe. Parameterized complexity theory, volume 3. Springer Heidelberg, 2006.Google ScholarGoogle Scholar
  17. {FHV13} Henning Fernau, Pinar Heggernes, and Yngve Villanger. A multivariate analysis of some DFA problems. In Proceedings of LATA, pages 275--286, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. {Gal12} François Le Gall. Faster algorithms for rectangular matrix multiplication. In FOCS, pages 514--523, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. {HKN12} Sepp Hartung, Christian Komusiewicz, and André Nichterlein. Parameterized algorithmics and computational experiments for finding 2-clubs. In Parameterized and Exact Computation, pages 231--241. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {HP98} Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications. J. Complexity, 14(2):257--299, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {IP01} Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367--375, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. {IPZ01} Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512--530, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. {LMS11} Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on bounded treewidth are probably optimal. In SODA, pages 777--789, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. {NP85} Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 26(2):415--419, 1985.Google ScholarGoogle Scholar
  25. {PP12} Marcin Pilipczuk and Michał Pilipczuk. Finding a maximum induced degenerate subgraph faster than 2n. In Parameterized and Exact Computation, pages 3--12. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. {PW10} Mihai Patraşcu and Ryan Williams. On the possibility of faster sat algorithms. In SODA, pages 1065--1075, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. {RV13} Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and radius of sparse graphs. In STOC, pages 515--524, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. {Sto74} Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory. PhD thesis, MIT, 1974.Google ScholarGoogle Scholar
  29. {Var82} Moshe Y. Vardi. The complexity of relational query languages. In STOC, pages 137--146, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. {Vas12} Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In STOC, pages 887--898, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. {WY14} Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In SODA, pages 1867--1877, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Faster decision of first-order graph properties

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CSL-LICS '14: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
      July 2014
      764 pages
      ISBN:9781450328869
      DOI:10.1145/2603088
      • Program Chairs:
      • Thomas Henzinger,
      • Dale Miller

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 14 July 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CSL-LICS '14 Paper Acceptance Rate74of212submissions,35%Overall Acceptance Rate143of386submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader