skip to main content
10.1145/2608628.2608633acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Cylindrical algebraic decomposition using local projections

Published:23 July 2014Publication History

ABSTRACT

We present an algorithm which computes a cylindrical algebraic decomposition of a semialgebraic set using projection sets computed for each cell separately. Such local projection sets can be significantly smaller than the global projection set used by the Cylindrical Algebraic Decomposition (CAD) algorithm. This leads to reduction in the number of cells the algorithm needs to construct. We give an empirical comparison of our algorithm and the classical CAD algorithm.

References

  1. S. Basu, R. Pollack, and M. Roy. Algorithms in real algebraic geometry, volume 10. Springer-Verlag New York Inc., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. W. Brown. Improved projection for cylindrical algebraic decomposition. J. Symbolic Comp., 32:447--465, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. W. Brown. Qepcad b - a program for computing with semi-algebraic sets using cads. ACM SIGSAM Bulletin, 37:97--108, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. W. Brown. Constructing a single open cell in a cylindrical algebraic decomposition. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2013, pages 133--140. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Caviness and J. Johnson, editors. Quantifier Elimination and Cylindrical Algebraic Decomposition, New York, 1998. Springer Verlag.Google ScholarGoogle ScholarCross RefCross Ref
  6. C. Chen, M. M. Maza, B. Xia, and L. Yang. Computing cylindrical algebraic decomposition via triangular decomposition. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2009, pages 95--102. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. Lect. Notes Comput. Sci., 33:134--183, 1975. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symbolic Comp., 12:299--328, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice. In Algorithmic Algebra and Number Theory, pages 221--247. Springer, 1998.Google ScholarGoogle Scholar
  10. D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput., 5(1/2):37--64, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 1990, pages 261--264. ACM, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. Hong and M. S. E. Din. Variant quantifier elimination. J. Symb. Comput., 47:883--901, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In IJCAR, pages 339--354, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Łojasiewicz. Ensembles semi-analytiques. I.H.E.S., 1964.Google ScholarGoogle Scholar
  15. R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450--462, 1993.Google ScholarGoogle Scholar
  16. S. McCallum. An improved projection for cylindrical algebraic decomposition of three dimensional space. J. Symbolic Comp., 5:141--161, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. McCallum. An improved projection for cylindrical algebraic decomposition. In B. Caviness and J. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 242--268. Springer Verlag, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Renegar. On the computational complexity and geometry of the first order theory of the reals. J. Symbolic Comp., 13:255--352, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Strzeboński. Computing in the field of complex algebraic numbers. J. Symbolic Comp., 24:647--656, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Strzeboński. Solving systems of strict polynomial inequalities. J. Symbolic Comp., 29:471--480, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Strzeboński. Cylindrical algebraic decomposition using validated numerics. J. Symbolic Comp., 41:1021--1038, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Strzeboński. Computation with semialgebraic sets represented by cylindrical algebraic formulas. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, pages 61--68. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Strzeboński. Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2012, pages 335--342. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Strzeboński. Cylindrical Algebraic Decomposition Using Local Projections. arXiv:1405.4925, 2014.Google ScholarGoogle Scholar
  25. A. Tarski. A decision method for elementary algebra and geometry. University of California Press, 1951.Google ScholarGoogle Scholar
  26. V. Weispfenning. Quantifier elimination for real algebra - the quadratic case and beyond. AAECC, 8:85--101, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Wilson. Real geometry and connectedness via triangular description: Cad example bank, 2012. http://opus.bath.ac.uk/29503/.Google ScholarGoogle Scholar

Index Terms

  1. Cylindrical algebraic decomposition using local projections

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
        July 2014
        444 pages
        ISBN:9781450325011
        DOI:10.1145/2608628

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISSAC '14 Paper Acceptance Rate51of96submissions,53%Overall Acceptance Rate395of838submissions,47%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader