skip to main content
research-article

Real-time shading-based refinement for consumer depth cameras

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

We present the first real-time method for refinement of depth data using shape-from-shading in general uncontrolled scenes. Per frame, our real-time algorithm takes raw noisy depth data and an aligned RGB image as input, and approximates the time-varying incident lighting, which is then used for geometry refinement. This leads to dramatically enhanced depth maps at 30Hz. Our algorithm makes few scene assumptions, handling arbitrary scene objects even under motion. To enable this type of real-time depth map enhancement, we contribute a new highly parallel algorithm that reformulates the inverse rendering optimization problem in prior work, allowing us to estimate lighting and shape in a temporally coherent way at video frame-rates. Our optimization problem is minimized using a new regular grid Gauss-Newton solver implemented fully on the GPU. We demonstrate results showing enhanced depth maps, which are comparable to offline methods but are computed orders of magnitude faster, as well as baseline comparisons with online filtering-based methods. We conclude with applications of our higher quality depth maps for improved real-time surface reconstruction and performance capture.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ahmed, A. H., and Farag, A. A. 2007. Shape from shading under various imaging conditions. In Proc. CVPR, 1--8.Google ScholarGoogle Scholar
  2. Aodha, O. M., Campbell, N. D. F., Nair, A., and Brostow, G. J. 2012. Patch based synthesis for single depth image superresolution. In Proc. ECCV, 71--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barron, J. T., and Malik, J. 2013. Intrinsic scene properties from a single rgb-d image. In Proc. CVPR, IEEE, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barron, J. T., and Malik, J. 2013. Shape, illumination, and reflectance from shading. Tech. rep., EECS, UC Berkeley, May.Google ScholarGoogle Scholar
  5. Beder, C., Bartczak, B., and Koch, R. 2007. A combined approach for estimating patchlets from PMD depth images and stereo intensity images. In Proc. DAGM, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross, M. 2010. High-quality single-shot capture of facial geometry. Proc. SIGGRAPH 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Beeler, T., Bradley, D., Zimmer, H., and Gross, M. 2012. Improved reconstruction of deforming surfaces by cancelling ambient occlusion. In Proc. ECCV, 30--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bermano, A., Bradley, D., Zund, T. B. F., Nowrouzezahrai, D., Baran, I., Sorkine-hornung, O., Pfister, H., Sumner, R., Bickel, B., and Gross, M. 2014. Facial performance enhancement using dynamic shape space analysis. ACM Transactions on Graphics 33. to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Besl, P. J., and McKay, N. D. 1992. Method for registration of 3-d shapes. In Robotics-DL tentative, International Society for Optics and Photonics, 586--606.Google ScholarGoogle Scholar
  10. Böhme, M., Haker, M., Martinetz, T., and Barth, E. 2008. Shading constraint improves accuracy of time-of-flight measurements. In Proc. CVPR Workshop.Google ScholarGoogle Scholar
  11. Chan, D., Buisman, H., Theobalt, C., and Thrun, S. 2008. A noise-aware filter for real-time depth upsampling. In ECCV Workshop on multi-camera & multi-modal sensor fusion.Google ScholarGoogle Scholar
  12. Cui, Y., Schuon, S., Thrun, S., Stricker, D., and Theobalt, C. 2013. Algorithms for 3d shape scanning with a depth camera. IEEE Trans. PAMI 35, 5, 1039--1050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Debevec, P. 1998. Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In Proc. SIGGRAPH, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Debevec, P. 2012. The light stages and their applications to photoreal digital actors. In SIGGRAPH Asia Technical Briefs.Google ScholarGoogle Scholar
  15. Diebel, J., and Thrun, S. 2006. An application of Markov Random Fields to range sensing. In Proc. NIPS, 291--298.Google ScholarGoogle Scholar
  16. Dolson, J., Baek, J., Plagemann, C., and Thrun, S. 2010. Upsampling range data in dynamic environments. In Proc. CVPR.Google ScholarGoogle Scholar
  17. Fanello, S., Keskin, C., Izadi, S., Kohli, P., et al. 2014. Learning to be a depth camera for close-range human capture and interaction. ACM Trans. Graph. 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graph. 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gudmundsson, S. A., Aanaes, H., and Larsen, R. 2008. Fusion of stereo vision and time-of-flight imaging for improved 3d estimation. Int. J. Intell. Syst. Technol. Appl. 5, 425--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Han, Y., Lee, J.-Y., and Kweon, I. S. 2013. High quality shape from a single rgb-d image under uncalibrated natural illumination. In Proc. ICCV.} Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hernández, C., Vogiatzis, G., and Cipolla, R. 2008. Multiview photometric stereo. IEEE PAMI 30, 3, 548--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Horn, B. K. 1974. Determining lightness from an image. Computer graphics and image processing 3, 4, 277--299.Google ScholarGoogle Scholar
  23. Horn, B. K. 1975. Obtaining shape from shading information. The psychology of computer vision, 115--155.Google ScholarGoogle Scholar
  24. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. 2011. Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In Proc. UIST, ACM, 559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Khan, N., Tran, L., and Tappen, M. 2009. Training many-parameter shape-from-shading models using a surface database. In Proc. ICCV Workshop.Google ScholarGoogle Scholar
  26. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lindner, M., Kolb, A., and Hartmann, K. 2007. Data-fusion of PMD-based distance-information and high-resolution RGB-images. In Proc. ISSCS, 121--124.Google ScholarGoogle Scholar
  28. Mulligan, J., and Brolly, X. 2004. Surface determination by photometric ranging. In Proc. CVPR Workshop. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. 2005. Efficiently combining positions and normals for precise 3D geometry. Proc. SIGGRAPH 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Newcombe, R. A., Izadi, S., et al. 2011. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed and augmented reality (ISMAR), IEEE international symposium on, 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Niessner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. 2013. Real-time 3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics (TOG) 32, 6, 169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Park, J., Kim, H., Tai, Y.-W., Brown, M. S., and Kweon, I.-S. 2011. High quality depth map upsampling for 3d-tof cameras. In ICCV, IEEE, 1623--1630. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Prados, E., and Faugeras, O. 2005. Shape from shading: a well-posed problem? In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Richardt, C., Stoll, C., Dodgson, N. A., Seidel, H.-P., and Theobalt, C. 2012. Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. Computer Graphics Forum (Proceedings of Eurographics) 31, 2 (May). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tunwattanapong, B., Fyffe, G., Graham, P., Busch, J., Yu, X., Ghosh, A., and Debevec, P. 2013. Acquiring reflectance and shape from continuous spherical harmonic illumination. ACM Transactions on Graphics (TOG) 32, 4, 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graph. 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Weber, D., Bender, J., Schnoes, M., Stork, A., and Fellner, D. 2013. Efficient gpu data structures and methods to solve sparse linear systems in dynamics applications. Computer Graphics Forum 32, 1, 16--26.Google ScholarGoogle ScholarCross RefCross Ref
  39. Wei, G.-Q., and Hirzinger, G. 1996. Learning shape from shading by a multilayer network. IEEE Trans. Neural Networks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wu, C., Varanasi, K., Liu, Y., Seidel, H.-P., and Theobalt, C. 2011. Shading-based dynamic shape refinement from multi-view video under general illumination. In Proc. ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wu, C., Stoll, C., Valgaerts, L., and Theobalt, C. 2013. On-set performance capture of multiple actors with a stereo camera. ACM Transactions on Graphics (TOG) 32, 6, 161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yang, Q., Yang, R., Davis, J., and Nistr, D. 2007. Spatial-depth super resolution for range images. In Proc. CVPR, IEEE.Google ScholarGoogle Scholar
  43. Yu, L.-F., Yeung, S.-K., Tai, Y.-W., and Lin, S. 2013. Shading-based shape refinement of rgb-d images. In Proc. CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhang, Z., Tsa, P.-S., Cryer, J. E., and Shah, M. 1999. Shape from shading: A survey. IEEE PAMI 21, 8, 690--706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhu, J., Wang, L., Yang, R., and Davis, J. 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In Proc. CVPR.Google ScholarGoogle Scholar
  46. Zollhöfer, M., Niessner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., and Stamminger, M. 2014. Real-time non-rigid reconstruction using an rgb-d camera. ACM TOG (Proc. SIGGRAPH) 33, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Zollhöfer, M., Thies, J., Colaianni, M., Stamminger, M., and Greiner, G. 2014. Interactive model-based reconstruction of the human head using an rgb-d sensor. Computer Animation and Virtual Worlds 25, 3-4, 213--222.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Real-time shading-based refinement for consumer depth cameras

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 33, Issue 6
            November 2014
            704 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2661229
            Issue’s Table of Contents

            Copyright © 2014 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 19 November 2014
            Published in tog Volume 33, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader