skip to main content
10.1145/2669711.2669907acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

Playing with SHULE: surgical haptic learning environment

Published:01 October 2014Publication History

ABSTRACT

The application of the Information and Communication Technologies to different disciplines such as surgical education opens new possible ways to carry out teaching and learning processes. While surgery used to be linked to the use of physical models, techniques such as Virtual Reality make possible new and more economic ways to learn. Virtual reality allows students to practice with virtual objects, with a very low cost. This may help those students to develop different skills. Some of them can be related with touch sense, which involves the addition of haptic interfaces to virtual reality simulators. The present work does not aim to do a specific haptic simulator to learn a surgical technique; the idea is to present a framework to build haptic surgical simulators to be used with educational proposes. In order to increase users motivation in the simulations are represented as serious games. The information of the simulations is sent to the LMS in a transparent way for the user, and once there students and teachers can evaluate it. In this way the framework enables the definition of serious games based in haptic simulations.

References

  1. Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., Smith, C. D. and Satava, R. M. 2005. Virtual Reality Simulation for the Operating Room. Ann. Surg. 241, 2, 364--372. DOI= http://dx.doi.org/10.1097%2F01.sla.0000151982.85062.80Google ScholarGoogle ScholarCross RefCross Ref
  2. Basdogan, C. and Srinivasan, M. A. 2002. Haptic Rendering in Virtual Environments. Handbook of virtual environments: Design, Implementation and Applications. 117--134.Google ScholarGoogle Scholar
  3. Kneebone, R. 2003. Simulation in surgical training: educational issues and practical implications. Med. Educ. 37, 3, 267--277. DOI= http://dx.doi.org/10.1046/j.1365-2923.2003.01440.xGoogle ScholarGoogle ScholarCross RefCross Ref
  4. Bridges, M. and Diamond, D. L. 1999. The financial impact of teaching surgical residents in the operating room. The Am. J. of Surg. 177, 1, 28--32. DOI= http://dx.doi.org/10.1016/S0002-9610(98)00289-XGoogle ScholarGoogle ScholarCross RefCross Ref
  5. Gorman, P. J., Meier, A. H., Rawn, C. and Krummel, T. M. 2000. The future of medical education is no longer blood and guts, it is bits and bytes. The Am. J. of Surg. 180, 5, 353--356. DOI= http://dx.doi.org/10.1016/S0002-9610(00)00514-6Google ScholarGoogle ScholarCross RefCross Ref
  6. Kunkler, K. 2006. The role of medical simulation: an overview. The Int. J. of Med. Robot. and Comput. Assist. Surg. 2, 3 (Sep. 2006), 203--210. DOI= http://dx.doi.org/10.1002/rcs.101Google ScholarGoogle ScholarCross RefCross Ref
  7. Darzi, A. and Mackay, S. 2001. Assessment of surgical competence. Qual. in Health Care, 10, 2, 64--69. DOI= http://dx.doi.org/10.1136/qhc.0100064Google ScholarGoogle ScholarCross RefCross Ref
  8. Fager, P. J. and Von Wowern, P. 2004. The use of haptics in medical applications. The Int. J. of Med. Robot. and Comput. Assist. Surg. 1, 1, 36--42. DOI=http://dx.doi.org/10.1002/rcs.4Google ScholarGoogle ScholarCross RefCross Ref
  9. Burdea, G. C. and Coiffet, P. 2003. Virtual Reality Technology. Wiley-Blackwell. 2nd edition. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Srinivasan, M. A. and Basdogan, C. 1997. Haptics in virtual environments: Taxonomy, research status and challenges. Comput. & Graph. 21, 4, 393--404. DOI= http://dx.doi.org/10.1016/S0097-8493(97)00030-7Google ScholarGoogle ScholarCross RefCross Ref
  11. Calatayud, D., Arora, S., Aggarwal R. et al. 2010. Warm-up in a virtual reality environment improves performance in the operating room. Ann. of Surg. 251, 6, 1181--1185. DOI= http://dx.doi.org/10.1097/SLA.0b013e3181deb630Google ScholarGoogle ScholarCross RefCross Ref
  12. Coles, T., Meglan, D. and John, N. 2011. The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art. IEEE Trans. on Haptics. 4, 1, 51--66. DOI= http://dx.doi.org/10.1109/TOH.2010.19 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H. and Srinivasan, M. A. 2004. Haptics in minimally invasive surgical simulation and training. IEEE Comput. Graph. and Appl. 24, 2 (Mar. 2004), 56--64. DOI= http://dx.doi.org/10.1109/MCG.2004.1274062 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Morris, D., Tan, H., Barbagli, F., Chang, T. and Salisbury, K. 2007. Haptic Feedback Enhances Force Skill Learning. In Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (Tsukaba, Japan, March, 22--24, 2007). WHC'07, 21--26. DOI= http://dx.doi.org/10.1109/WHC.2007.65 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Steinberg, A. D., Bashook, P. G., Drummond, J., Ashrafi, S. and Zefran, M. 2007. Assessment of faculty perception of content validity of PerioSim, a haptic-3d virtual reality dental training simulator. J. of Dent. Educ. 71, 12, 1574--1582.Google ScholarGoogle Scholar
  16. Youngblood, P. L., Srivastava, S., Curet, M., Heinrichs, W. L., Dev, P. and Wren, S. 2005. Comparison of training on two laparoscopic simulators and assessment of skills transfer to surgical performance. J. of the Am. Coll. of Surg. 200, 4 (Apr. 2005), 546--551. DOI= http://dx.doi.org/10.1016/j.jamcollsurg.2004.11.011Google ScholarGoogle ScholarCross RefCross Ref
  17. Sturm, L. P., Windsor, J. A., Cosman, P. H., Cregan, P., Hewett, P. J. and Maddern, G. J. 2008. A systematic review of skills transfer after surgical simulation training. Ann. of Surg. 248, 2, 166--179. DOI= http://dx.doi.org/10.1097/SLA.0b013e318176bf24Google ScholarGoogle ScholarCross RefCross Ref
  18. Choi, K., Sun, H. and Heng, P. 2003. Interactive Deformation of Soft Tissues with Haptic Feedback for Medical Learning. IEEE Trans. on Inf. Technol. in Biomed. 7, 4, 358--363. DOI=http://dx.doi.org/10.1109/TITB.2003.821311 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Maciel, A., Halic, T., Lu, Z., Nedel, L. P. and De, S. 2009. Using the PhysX engine for physics-based virtual surgery with force feedback. The Int. J. of Med. Robot. and Comput. Assist. Surg. 5, 3, 341--353. DOI=http://dx.doi.org/10.1002/rcs.266Google ScholarGoogle ScholarCross RefCross Ref
  20. Salkini, M. W., Doarn, C. R., Kiehl, N. et al. 2010. The Role of Haptic Feedback in Laparoscopic Training Using the LapMentor II. J. of Endourol. 24, 1, 99--102. DOI= http://dx.doi.org/10.1089/end.2009.0307Google ScholarGoogle ScholarCross RefCross Ref
  21. Lucas, S., Tuncel, A., Bensalah, K., Zeltser, I., Jenkins, A., Pearle, M. and Cadeddu, J. 2008. Virtual reality training improves simulated Laparoscopic surgery performance in laparoscopy naive medical students. J. of Endourol. 22, 5, 1047--1051. DOI=http://dx.doi.org/10.1089/end.2007.0366Google ScholarGoogle ScholarCross RefCross Ref
  22. Maciel, A., Liu, Y., Ahn, W., Singh, T. P., Dunnican, W. and De, S. 2008. Development of the VBLaST: A virtual basic laparoscopic skill trainer. Int. J. of Med. Robot. and Comput. Assist. Surg. 4, 2, 131--138. DOI= http://dx.doi.org/10.1002/rcs.185Google ScholarGoogle ScholarCross RefCross Ref
  23. Tolsdorff, B., Pommert, A., Höhne, K. H., Petersik, A. et al. 2010. Virtual Reality: A new paranasal sinus surgery simulator. The Laryngoscope. 120, 2, 420--426. DOI=http://dx.doi.org/10.1002/lary.20676Google ScholarGoogle ScholarCross RefCross Ref
  24. Perez-Gutierrez, B., Martinez, D. M. and Rojas, O. E. 2010. Endoscopic endonasal haptic surgery simulator prototype: A rigid endoscope model. In Proceedings of the 2010 IEEE Virtual Reality Conference, (Waltham, MA, March, 20--24, 2010), 297--298. DOI= http://dx.doi.org/10.1109/VR.2010.5444756 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Choi, K. S., Soo, S. and Chung, F. L. 2009. A virtual training simulator for learning cataract surgery with phacoemulsification. Comput. in Biol. and Med. 39, 11, 1020--1031. DOI=http://dx.doi.org/10.1016/j.compbiomed.2009.08.003 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Qiong, W., Hui, C., Wen, W., Hai-Yang, J. et al. 2012. Real-Time Mandibular Angle Reduction Surgical Simulation With Haptic Rendering. IEEE Trans. on Inf. Technol. and Biomed.16, 6, 1105--1114. DOI= http://dx.doi.org/10.1109/TITB.2012.2218114 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Fang, T. Y., Wang, P. C., Liu, C. H., Su, M. C. and Yeh, S. C. 2014. Evaluation of a haptics-based virtual reality temporal bone simulator for anatomy and surgery training. Comput. Meth. and Prog. in Biomed. 113, 2, 674--681. DOI=http://dx.doi.org/10.1016/j.cmpb.2013.11.005 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Rhienmora, P., Haddawy, P., Suebnukarn, S. and Dailey, M. N. 2011. Intelligent dental training simulator with objective skill assessment and feedback. Artifi. Int. in Med. 52, 2, 115--121. DOI=http://dx.doi.org/10.1016/j.artmed.2011.04.003Google ScholarGoogle Scholar
  29. Wang, D., Zhang, Y., Hou, J., Wang. Y. et al. 2012. iDental: A Haptic-Based Dental Simulator and Its Preliminary User Evaluation. IEEE Trans. on Haptics. 5, 4, 332--343. DOI=http://dx.doi.org/10.1109/TOH.2011.59 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ullrich, S. and Kuhlen, T. 2012. Haptic Palpation for Medical Simulation in Virtual Environments. IEEE Trans. on Vis. and Comput. Graph. 18, 4, 617--625. DOI=http://dx.doi.org/10.1109/TVCG.2012.46 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hamza-Lup, F. G., Bogdan, C. M. and Seitan, A. 2012. Haptic Simulator for Liver Diagnostics through Palpation. Stud. in Health Technol. and Inform. 173, 156--160. DOI= http://dx.doi.org/10.3233/978-1-61499-022-2-156Google ScholarGoogle Scholar
  32. Dong, N., Chan, W. Y., Qin, J. et al. 2011. A Virtual Reality Simulator for Ultrasound-Guided Biopsy Training. IEEE Comput. Graph. and Appl. 31, 2, 36--48. DOI=http://dx.doi.org/10.1109/MCG.2009.151 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Goksel, O., Sapchuk, K. and Salcudean, S. E. 2011. Haptic Simulator for Prostate Brachytherapy with Simulated Needle and Probe Interaction. IEEE Trans. on Haptics. 4, 3, 188--198. DOI=http://dx.doi.org/10.1109/TOH.2011.34 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Minovic, M., García-Peñalvo, F. J. and Kearney, N. A. In press. Gamification in Engineering Education. International Journal of Engineering Education. Tempus Publication. ISSN 0949-149X (Article in press).Google ScholarGoogle Scholar
  35. Michael, D. R. and Chen, S. L. 2005. Serious Games: Games That Educate, Train and Inform. Muska & Lipman/Premier Trade. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Graafland, M., Schraagen, J. M. and Schijven, M. P. 2012. Systematic review of serious games for medical education and surgical skills training. Brit. J. of Surg. 99, 10, 1322--1330. DOI=http://dx.doi.org/10.1002/bjs.8819Google ScholarGoogle ScholarCross RefCross Ref
  37. Hamza-Lup, F. G., Bogdan, C. M., Popovici, D. M. and Costea, O. D. 2011. A Survey of Visuo-Haptic Simulation in Surgical Training. In Proceedings of the International Conference on Mobile, Hybrid and On-Line Learning. (Gosier, Guadeloupe, France, February, 23--28, 2011), 57--62.Google ScholarGoogle Scholar
  38. Ruthenbeck, G. S. and Reynolds, K. J. 2013. Virtual reality surgical simulator software development tools. J. of Simul. 7, 2, 101--108. DOI=http://dx.doi.org/10.1057/jos.2012.22Google ScholarGoogle ScholarCross RefCross Ref
  39. Esteban, G., Fernández, C., Matellán, V. and Gonzalo, J. M. 2011. Computer surgery 3D simulations for a new teaching-learning model. In Proceedings of the 2011 IEEE 1st International Conference on Serious Games and Applications for Health (Braga, Portugal, November, 16--18, 2011). SEGaH' 11. DOI= http://dx.doi.org/10.1109/SeGAH.2011.6165445 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Esteban, G., Fernández, C., Conde, M. Á. And Matellán, V. 2013. Design of a haptic simulator framework for modelling surgical learning systems. In Proceedings of the First International Conference on Technological Ecosystem for Enhancing Multiculturality (Salamanca, Spain, November, 14--16, 2013). TEEM '13, 87--94. DOI= http://dx.doi.org/10.1145/2536536.2536551 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. OGRE. 2009. OGRE - Open Source 3D Graphics Engine. http://www.ogre3d.org/ (Last Accessed 09/07/2014)Google ScholarGoogle Scholar
  42. Conde, M. Á., Gómez, D. A., Pozo, A. d. and García-Peñalvo, F. J. 2010. Web services layer for Moodle 2.0.: A new area of possibilities in web based learning. International Journal of Technology Enhaced Learning (IJTEL), 3, 308--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Piguillem, J. 2009. Moodle 2.0 Web Services architecture. City.Google ScholarGoogle Scholar
  44. Conde, M. Á., Pozo, A. and García-Peñalvo, F. J. 2011. e-Learning Services in Moodle 2.0. CEPIS Upgrade. 21, 2, 43--50.Google ScholarGoogle Scholar
  45. Cerami, E. and St. Laurent, S. 2002. Web Services Essentials. O'Reilly & Associates, Inc., Sebastopol, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Roy, J. and Ramanujan, A. 2001. Understanding Web Services. IT Professional, 3, 6, 69--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. OASIS. 2005. SAML v 2.0. http://saml.xml.org/samlspecifications (Last Accessed 07/08/2014).Google ScholarGoogle Scholar
  48. Moodle. 2013. Moodle Badges. http://docs.moodle.org/27/en/Badges (Last Accessed 09/07/2014).Google ScholarGoogle Scholar
  49. Mozilla. 2011. OpenBadges. http://www.openbadges.org/ (Last Accessed 09/07/2014).Google ScholarGoogle Scholar

Index Terms

  1. Playing with SHULE: surgical haptic learning environment

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            TEEM '14: Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality
            October 2014
            711 pages
            ISBN:9781450328968
            DOI:10.1145/2669711

            Copyright © 2014 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 October 2014

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate496of705submissions,70%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader