skip to main content
research-article
Free Access

Distributed information processing in biological and computational systems

Published:23 December 2014Publication History
Skip Abstract Section

Abstract

Exploring the similarities and differences between distributed computations in biological and computational systems.

References

  1. Afek, Y. et al. Beeping a maximal independent set. Distributed Computing; Lecture Notes in Computer Science. D. Peleg, Ed. (2011). Springer-Verlag, Berlin Heidelberg, 32--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Afek, Y. et al. A biological solution to a fundamental distributed computing problem. Science 331, 6014 (2011), 183--185.Google ScholarGoogle ScholarCross RefCross Ref
  3. Aida, K., Natsume, W. and Futakata, Y. Distributed computing with hierarchical master-worker paradigm for parallel branch and bound algorithm. In Proceedings of the 31st International Symposium on Cluster Computing and the Grid. IEEE Computer Society, Washington, DC, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Anastasi, G., Conti, M., Di Francesco, M. and Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw. 7, 3 (May 2009), 537--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Angluin, D. Local and global properties in networks of processors (extended abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing. ACM, New York, NY, 1980, 82--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Aspnes, J. and Ruppert, E. An introduction to population protocols. Middleware for Network Eccentric and Mobile Applications. B. Garbinato, H. Miranda, and L. Rodrigues, Eds. Springer-Verlag, Berlin, Heidelberg, 2009, 97--120.Google ScholarGoogle Scholar
  7. Attiya, H., Bar-Noy, A. and Dolev, D. Sharing memory robustly in message-passing systems. JACM 42, 1 (Jan. 1995), 124--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Babaoglu, O., Binci, T., Jelasity, M. and Montresor, A. Firefly-inspired heartbeat synchronization in overlay networks. In Proceeding of the First International Conference Self-Adaptive and Self-Organizing Systems (2007), 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Beauquier, J., Blanchard, P., Burman, J. and Delaët, S. Tight complexity analysis of population protocols with cover times--the Zebranet example. Theor. Comput. Sci. 512 (Nov. 2013), 15--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bryant, B. Chromatin computation. PLoS ONE 7, 5 (2012), e35703.Google ScholarGoogle ScholarCross RefCross Ref
  11. Buesing, L., Bill, J., Nessler, B. and Maass, W. Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput. Biol. 7, 11 (Nov. 2011), e1002211.Google ScholarGoogle ScholarCross RefCross Ref
  12. Bushman, F. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 5, 5 (May 2009), e1000437.Google ScholarGoogle ScholarCross RefCross Ref
  13. Cardelli, L. and Csikasz-Nagy, A. The cell cycle switch computes approximate majority. Sci Rep. 2:656 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  14. Chazelle, B. Natural algorithms and influence systems. Commun. ACM 55, 12 (Dec. 2012), 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cheong, R., Rhee, A., Wang, C.J., Nemenman, I. and Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. Science 334, 6054 (Oct. 2011), 354--358.Google ScholarGoogle ScholarCross RefCross Ref
  16. Chittka, L., Skorupski, P., and Raine, N.E. Speed-accuracy tradeoffs in animal decision-making. Trends Ecol. Evol. 24, 7 (July 2009), 400--407.Google ScholarGoogle ScholarCross RefCross Ref
  17. Cornejo, A. and Kuhn, F. Deploying wireless networks with beeps. In Proceedings of the 24th International Conference on Distributed Computing (2010). Springer-Verlag, Berlin, Heidelberg, 148--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Cuntz, H., Forstner, F., Borst, A. and Hausser, M. One rule to grow them all: A general theory of neuronal branching and its practical application. PLoS Comput. Biol. 6, 8 (2010).Google ScholarGoogle ScholarCross RefCross Ref
  19. Destexhe, A. and Contreras, D. Neuronal computations with stochastic network states. Science 314, 5796 (Oct. 2006), 85--90.Google ScholarGoogle ScholarCross RefCross Ref
  20. Emek, Y. and Wattenhofer, R. Stone age distributed computing. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing (2013). ACM, New York, NY, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Falik, O., Mordoch, Y., Quansah, L., Fait, A. and Novoplansky, A. Rumor has it…: Relay communication of stress cues in plants. PLoS ONE 6, 11 (2011), e23625.Google ScholarGoogle ScholarCross RefCross Ref
  22. Feinerman, O. and Korman, A. Theoretical distributed computing meets biology: A review. Distributed Computing and Internet Technology. C. Hota and P. Srimani, Eds. Lecture Notes in Computer Science 7753 (2013), 1--18. Springer-Verlag, Berlin Heidelberg, 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  23. Feinerman, O., Korman, A., Lotker, Z. and Sereni, J-S. Collaborative search on the plane without communication. In Proceedings of the ACM Symposium on Principles of Distributed Computing (2012). ACM, New York, NY, 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gitter, A. et al. Backup in gene regulatory networks explains differences between binding and knockout results. Mol. Syst. Biol. 5, 276 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  25. Gupta, I., Chandra, T.D., and Goldszmidt, G.S. On scalable and efficient distributed failure detectors. In Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing (2001). ACM, New York, NY, 170--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hsiao, T.L. and Vitkup, D. Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet. 4, 3 (Mar. 2008), e1000014.Google ScholarGoogle ScholarCross RefCross Ref
  27. Hu, T., Genkin, A. and Chklovskii, D.B. A network of spiking neurons for computing sparse representations in an energy-efficient way. Neural Comput 24, 11 (Nov. 2012), 2852--2872. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Hu, Z. and Li, B. Fundamental performance limits of wireless sensor networks. Ad Hoc and Sensor Networks (2004), 81--101.Google ScholarGoogle Scholar
  29. Ioannou, C.C., Guttal, V. and Couzin, I.D. Predatory fish select for coordinated collective motion in virtual prey. Science 337, 6099 (Sept. 2012), 1212--1215.Google ScholarGoogle Scholar
  30. Jakovcevski, M. and Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 8 (Aug. 2012), 1194--1204.Google ScholarGoogle ScholarCross RefCross Ref
  31. Jongeneel, C.V. et al. An atlas of human gene expression from massively parallel signature sequencing (MPSS). Genome Res 15, 7 (July 2005), 1007--1014.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kitano, H. and Oda, K. Robustness trade-offs and host-microbial symbiosis in the immune system. Mol. Syst. Biol. 2:2006.0022 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  33. Kuhn, F., Lynch, N., and Oshman, R. Distributed computation in dynamic networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing (2010). ACM, New York, NY, 513--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Levy, S., Kafri, M. Carmi, M. and Barkai, N. The competitive advantage of a dual-transporter system. Science 334, 6061 (Dec. 2011), 1408--1412.Google ScholarGoogle ScholarCross RefCross Ref
  35. Li, K., Thomas, K., Torres, C., Rossi, L. and Shen, C-C. Slime mold inspired path formation protocol for wireless sensor networks. In Proceedings of the 7th International Conference on Swarm Intelligence (2010). Springer-Verlag, Berlin, Heidelberg, 299--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Luby, M. A simple parallel algorithm for the maximal independent set problem. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing (1985). ACM, New York, NY, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Lynch, N.A. Distributed Algorithms. Morgan Kaufmann, San Francisco, CA, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mehta, P. and Schwab, D.J. Energetic costs of cellular computation. In Proceedings of the Natl. Acad. Sci. 109, 44 (Oct. 2012), 17978--17982.Google ScholarGoogle ScholarCross RefCross Ref
  39. Métivier, Y., Robson, J., Saheb-Djahromi, N. and Zemmari, A. An optimal bit complexity randomized distributed mis algorithm. Distributed Computing 23, 5-6 (2011), 331--340.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 5594 (Oct. 2002), 824--827.Google ScholarGoogle ScholarCross RefCross Ref
  41. Mittal, P. and Borisov, N. Information leaks in structured peer-to-peer anonymous communication systems. In Proceedings of the Conf. on Computer and Communications Security (2008), ACM, New York, NY, 267--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Navlakha, S. and Bar-Joseph, Z. Algorithms in nature: The convergence of systems biology and computational thinking. Mol. Syst. Biol. 7:546 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  43. Navlakha, S., He, X., Faloutsos, C. and Bar-Joseph, Z. Topological properties of robust biological and computational networks. J R Soc Interface 11, 96 (2014).Google ScholarGoogle ScholarCross RefCross Ref
  44. Nusser-Stein, S. et al. Cell-cycle regulation of NOTCH signaling during C. elegans vulval development. Mol. Syst. Biol. 8:618 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  45. Pecevski, D., Buesing, L. and Maass, W. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons. PLoS Comput. Biol. 7, 12 (Dec. 2011), e1002294.Google ScholarGoogle ScholarCross RefCross Ref
  46. Prabhakar, B., Dektar, K.N., and Gordon, D.M. The regulation of ant colony foraging activity without spatial information. PLoS Comput. Biol. 8, 8 (2012), e1002670.Google ScholarGoogle ScholarCross RefCross Ref
  47. Price, M.N. et al. Indirect and suboptimal control of gene expression is widespread in bacteria. Mol. Syst. Biol. 9:600, (2013).Google ScholarGoogle ScholarCross RefCross Ref
  48. Reid, C.R., Latty, T., Dussutour, A., and Beekman, M. Slime mold uses an externalized spatial "memory" to navigate in complex environments. In Proceedings of the Natl. Acad. Sci. 109, 43 (Oct. 2012), 17490--17494.Google ScholarGoogle ScholarCross RefCross Ref
  49. Scott, A., Jeavons, P., and Xu, L. Feedback from nature: An optimal distributed algorithm for maximal independent set selection. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing. ACM, New York, NY, 147--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Shklarsh, A., Ariel, G., Schneidman, E. and Ben-Jacob, E. Smart swarms of bacteria-inspired agents with performance adaptable interactions. PLoS Comput. Biol. 7, 9 (Sept. 2011), e1002177.Google ScholarGoogle ScholarCross RefCross Ref
  51. Tang, J., Xue, G., Chandler, C., and Zhang, W. Interference-aware routing in multihop wireless networks using directional antennas. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (2005). IEEE, 751--760.Google ScholarGoogle Scholar
  52. Tero, A. et al. Rules for biologically inspired adaptive network design. Science 327, 5964 (2010), 439--442.Google ScholarGoogle ScholarCross RefCross Ref
  53. Tyson, J.J., Chen, K.C., and Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 2 (Apr. 2003), 221--231.Google ScholarGoogle ScholarCross RefCross Ref
  54. Wakefield, E.D. et al. Space partitioning without territoriality in gannets. Science 341, 6141 (July 2013), 68--70.Google ScholarGoogle ScholarCross RefCross Ref
  55. Yu, H. and Gerstein, M. Genomic analysis of the hierarchical structure of regulatory networks. In Proceedings of the Natl. Acad. Sci. 103, 40 (Oct. 2006), 14724--14731.Google ScholarGoogle ScholarCross RefCross Ref
  56. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V. and Gerstein, M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, 4 (Apr. 2007), e59.Google ScholarGoogle ScholarCross RefCross Ref
  57. Zhong, Q. et al. Edgetic perturbation models of human inherited disorders. Mol. Syst. Biol. 5, 321 (2009).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Distributed information processing in biological and computational systems

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image Communications of the ACM
              Communications of the ACM  Volume 58, Issue 1
              January 2015
              105 pages
              ISSN:0001-0782
              EISSN:1557-7317
              DOI:10.1145/2688498
              • Editor:
              • Moshe Y. Vardi
              Issue’s Table of Contents

              Copyright © 2014 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 23 December 2014

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Popular
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDFChinese translation

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format