skip to main content
research-article

Directional Dipole Model for Subsurface Scattering

Published:29 December 2014Publication History
Skip Abstract Section

Abstract

Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some translucency effects in the rendered result. We present an improved analytical model for subsurface scattering that captures translucency effects present in the reference solutions but remaining absent with existing models. The key difference is that our model is based on ray source diffusion, rather than point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images are significantly closer to the references. Unlike some previous work, our model is fully analytic and requires no precomputation.

References

  1. R. Aronson. 1995. Boundary conditions for diffusion of light. J. Optical Soc. Amer. A 12, 11, 2532--2539.Google ScholarGoogle ScholarCross RefCross Ref
  2. T. O. Aydin, R. Mantiuk, and H.-P. Seidel. 2008. Extending quality metrics to full luminance range images. In Proceedings of the SPIE Conference on Human Vision and Electronic Imaging. Vol. 6806. 68060B.Google ScholarGoogle ScholarCross RefCross Ref
  3. F. Bevilacqua and C. Depeursinge. 1999. Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path. J. Optical Soc. Amer. A 16, 12, 2935--2945.Google ScholarGoogle ScholarCross RefCross Ref
  4. J. F. Blinn. 1982. Light reflection functions for simulation of clouds and dusty surfaces. Comput. Graph. 16, 3, 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Davison. 1958. Neutron Transport Theory. Authored with the collaboration of J. B. Sykes. Oxford University Press.Google ScholarGoogle Scholar
  6. E. D'Eon. 2012. A better dipole. http://www.eugenedeon.com/?project=a-better-dipoleGoogle ScholarGoogle Scholar
  7. E. D'Eon and G. Irving. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1--56:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. Donner and H. W. Jensen. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 3, 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Donner and H. W. Jensen. 2007. Rendering translucent materials using photon diffusion. In Proceedings of the Eurographics Symposium on Rendering (Rendering Techniques'07). 243--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Donner, J. Lawrence, R. Ramamoorthi, T. Hachisuka, H. W. Jensen, and S. Nayar. 2009. An empirical BSSRDF model. ACM Trans. Graph. 28, 3, 30:1--30:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K. Pedersen. 1999. Modeling and rendering of weathered stone. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 225--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Eason, A. R. Veitch, R. M. Nisbet, and F. W. Turnbull. 1978. The theory of the back-scattering of light by blood. J. Phys. D Appl. Phys. 1978, 10, 1463--1479.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. P. Elliott. 1955. Milne's problem with a point-source. Proc. Royal Soc. London Series A Math. Phys. Sci. 228, 1174, 424--433.Google ScholarGoogle Scholar
  14. T. J. Farrell, M. S. Patterson, and B. Wilson. 1992. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 4, 879--888.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Fick. 1855. On liquid diffusion. The London, Edinburgh, Dublin Philosophical Mag. J. Sci. X, 30--39. (Abstracted by the author from the german original: Über Diffusion, Poggendorff's Annalen der Physik und Chemie 94, 59--86.)Google ScholarGoogle ScholarCross RefCross Ref
  16. R. J. Fretterd and R. L. Longini. 1973. Diffusion dipole source. J. Optical Soc. Amer. 63, 3, 336--337.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. Glasstone and M. C. Edlund. 1952. The Elements of Nuclear Reactor Theory. D. van Nostrand Company, Princeton, NJ.Google ScholarGoogle Scholar
  18. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch. 1983. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Appl. Optics 22, 16, 2456--2462.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Habel, P. H. Christensen, and W. Jarosz. 2013. Photon beam diffusion: A hybrid Monte Carlo method for subsurface scattering. Comput. Graph. Forum 32, 4, 27--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Hanrahan and W. Krueger 1993. Reflection from layered surfaces due to subsurface scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'93). 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg. 1994. Boundary conditions for the diffusion equation in radiative transfer. J. Optical Soc. Amer. A 11, 10, 2727--2741.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Ishimaru. 1978. Wave Propagation and Scattering in Random Media. Academic Press, New York. Reissued by IEEE Press and Oxford University Press 1997.Google ScholarGoogle Scholar
  23. H. W. Jensen and J. Buhler. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21, 3, 576--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. W. Jensen and P. H. Christensen. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'98). 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. 2001. A practical model for subsurface light transport. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. 1976. The delta-Eddington approximation for radiative flux transfer. J. Atmosph. Sci. 33, 2452--2459.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Kienle. 2005. Light diffusion through a turbid parallelepiped. J. Optical Soc. Amer. A 22, 9, 1883--1888.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Kienle and M. S. Patterson. 1997. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Optical Soc. Amer. A 14, 1, 246--254.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Menon, Q. Su, and R. Grobe. 2005a. Determination of g and μ using multiply scattered light in turbid media. Phys. Rev. Lett. 94, 153904.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Menon, Q. Su, and R. Grobe. 2005b. Generalized diffusion solution for light scattering from anisotropic sources. Optics Lett. 30, 12, 1542--1544.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3, 1003--1012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. 1977. Geometrical considerations and nomenclature for reflectance. National Bureau of Standards, NBS-MN-160. http://graphics.stanford.edu/courses/cs448-05-winter/papers/nicodemus-brdf-nist.pdf.Google ScholarGoogle Scholar
  33. H. E. Rushmeier. 1988. Realistic image synthesis for scenes with radiatively participating media. Ph.D. thesis, Cornell University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. J. Stam. 1995. Multiple scattering as a diffusion process. In Proceedings of the 6th Eurographics Workshop on Rendering (RenderingTechniques'95), P. Hanrahan and W. Purgathofer, Eds. Springer, 41--50.Google ScholarGoogle ScholarCross RefCross Ref
  35. B. Sun, R. Ramamoorthi, S. G. Narasimhan, and S. K. Nayar. 2005. A practical analytic single scattering model for real time rendering. ACM Trans. Graph. 24, 3, 1040--1049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. B. Walter, S. Zhao, N. Holzschuch, and K. Bala. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Trans. Graph. 28, 3, 92:1--92:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. L. Wang and S. L. Jacques. 1995. Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium. Appl. Optics 34, 13, 2362--2366.Google ScholarGoogle ScholarCross RefCross Ref
  38. L. V. Wang. 1998. Rapid modeling of diffuse reflectance of light in turbid slabs. J. Optical Soc. Amer. 15, 4, 936--944.Google ScholarGoogle ScholarCross RefCross Ref
  39. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 4, 600--612. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. M. R. Williams. 1982. The three-dimensional transport equation with applications to energy deposition and reflection. J. Phys. A Math. General 15, 3, 965--983.Google ScholarGoogle ScholarCross RefCross Ref
  41. M. M. R. Williams. 2009. Three-dimensional transport theory: An analytical solution of an internal beam searchlight problem-i. Ann. Nuclear Energy 36, 6, 767--783.Google ScholarGoogle ScholarCross RefCross Ref
  42. L.-Q. Yan, Y. Zhou, K. Xu, and R. Wang. 2012. Accurate translucent material rendering under spherical gaussian lights. Comput. Graph. Forum 31, 7, 2267--2276. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Directional Dipole Model for Subsurface Scattering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 1
        November 2014
        153 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2702692
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 December 2014
        • Revised: 1 May 2014
        • Accepted: 1 May 2014
        • Received: 1 December 2013
        Published in tog Volume 34, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader