skip to main content
10.1145/2783258.2783325acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article
Open Access

TimeMachine: Timeline Generation for Knowledge-Base Entities

Published:10 August 2015Publication History

ABSTRACT

We present a method called TIMEMACHINE to generate a timeline of events and relations for entities in a knowledge base. For example for an actor, such a timeline should show the most important professional and personal milestones and relationships such as works, awards, collaborations, and family relationships. We develop three orthogonal timeline quality criteria that an ideal timeline should satisfy: (1) it shows events that are relevant to the entity; (2) it shows events that are temporally diverse, so they distribute along the time axis, avoiding visual crowding and allowing for easy user interaction, such as zooming in and out; and (3) it shows events that are content diverse, so they contain many different types of events (e.g., for an actor, it should show movies and marriages and awards, not just movies). We present an algorithm to generate such timelines for a given time period and screen size, based on submodular optimization and web-co-occurrence statistics with provable performance guarantees. A series of user studies using Mechanical Turk shows that all three quality criteria are crucial to produce quality timelines and that our algorithm significantly outperforms various baseline and state-of-the-art methods.

Skip Supplemental Material Section

Supplemental Material

p19.mp4

mp4

259.3 MB

References

  1. A. Ahmed, C. H. Teo, S. Vishwanathan, and A. Smola. Fair and balanced: Learning to present news stories. In WSDM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. Allan, R. Gupta, and V. Khandelwal. Temporal summaries of new topics. In SIGIR, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T. Althoff, X. L. Dong, K. Murphy, S. Alai, V. Dang, and W. Zhang. TimeMachine: Timeline Generation for Knowledge-Base Entities. arXiv:1502.04662, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, New York, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bamman and N. Smith. Unsupervised discovery of biographical structure from text. TACL, 2(10):363--376, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  6. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In SIGMOD, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740--1766, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In SIGIR, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Carterette, P. N. Bennett, D. M. Chickering, and S. T. Dumais. Here or there: Preference Judgments for Relevance. In Advances in Information Retrieval. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Dasgupta, R. Kumar, and S. Ravi. Summarization through submodularity and dispersion. In ACL, 2013.Google ScholarGoogle Scholar
  11. Q. X. Do, W. Lu, and D. Roth. Joint inference for event timeline construction. In EMNLP-CoNLL, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In SIGKDD, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and A. Tomkins. Visualizing tags over time. TWEB, 1(2):7, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634--652, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Graus, M.-H. Peetz, D. Odijk, O. de Rooij, and M. de Rijke. yourHistory--Semantic linking for a personalized timeline of historic events. Workshop: LinkedUp Challenge at OKCon, 2013.Google ScholarGoogle Scholar
  16. T. Huet, J. Biega, and F. M. Suchanek. Mining history with le monde. In AKBC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. H. Ji, T. Cassidy, Q. Li, and S. Tamang. Tackling representation, annotation and classification challenges for temporal knowledge base population. KAIS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Kannan, S. Baker, K. Ramnath, J. Fiss, D. Lin, L. Vanderwende, R. Ansary, A. Kapoor, Q. Ke, M. Uyttendaele, et al. Mining text snippets for images on the web. In SIGKDD, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. S. M. Katz. Estimation of probabilities from sparse data for the language model component of a speech recognizer. In IEEE Trans Sig. Process., 1987.Google ScholarGoogle ScholarCross RefCross Ref
  20. A. Krause and D. Golovin. Submodular function maximization. In Tractability: Practical Approaches to Hard Problems (to appear). Cambridge University Press, 2014.Google ScholarGoogle Scholar
  21. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In SIGKDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Li and C. Cardie. Timeline generation: tracking individuals on twitter. In WWW, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Proc. ACL Text Summarization Workshop, 2004.Google ScholarGoogle Scholar
  24. H. Lin and J. A. Bilmes. Learning mixtures of submodular shells with application to document summarization. In UAI, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. X. Ling and D. S. Weld. Temporal information extraction. In AAAI Conference on Artificial Intelligence, 2010.Google ScholarGoogle Scholar
  26. A. Mazeika, T. Tylenda, and G. Weikum. Entity timelines: Visual analytics and named entity evolution. In CIKM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization Techniques, pages 234--243. Springer, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  28. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular set functions -- I. Mathematical Programming, 14(1):265--294, 1978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Qian. Timeline: Understanding Important Events in People's Lives.small http://blogs.bing.com/search/2014/02/21/timeline-understanding-important-events-in-peoples-lives/, February 2014. Last retrieved on Feb 18, 2015.Google ScholarGoogle Scholar
  30. D. Shahaf, C. Guestrin, and E. Horvitz. Metro maps of science. In SIGKDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Shahaf, J. Yang, C. Suen, J. Jacobs, H. Wang, and J. Leskovec. Information cartography: creating zoomable, large-scale maps of information. In SIGKDD, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques, and solutions. TKDE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. Sipos, A. Swaminathan, P. Shivaswamy, and T. Joachims. Temporal corpus summarization using submodular word coverage. In CIKM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Spärck Jones. Automatic summarising: The state of the art. Information Processing & Management, 43(6):1449--1481, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. M. Suchanek and N. Preda. Semantic Culturomics (Vision paper). In Very Large Databases (VLDB), 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Swan and J. Allan. Automatic generation of overview timelines. In SIGIR, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. T. Tran, A. Ceroni, M. Georgescu, K. D. Naini, and M. Fisichella. Wikipevent: Leveraging wikipedia edit history for event detection. In WISE. Springer, 2014.Google ScholarGoogle Scholar
  39. T. A. Tuan, S. Elbassuoni, N. Preda, and G. Weikum. CATE: Context-Aware Timeline for Entity Illustration. In WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Y. Wang, M. Zhu, L. Qu, M. Spaniol, and G. Weikum. Timely Yago: harvesting, querying, and visualizing temporal knowledge from Wikipedia. In EDBT, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. A. Benczúr, S. Kirkpatrick, P. Rigaux, and M. Williamson. Longitudinal Analytics on Web Archive Data: It's About Time! In CIDR, 2011.Google ScholarGoogle Scholar
  42. X. W. Zhao, Y. Guo, R. Yan, Y. He, and X. Li. Timeline generation with social attention. In SIGIR, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. TimeMachine: Timeline Generation for Knowledge-Base Entities

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
      August 2015
      2378 pages
      ISBN:9781450336642
      DOI:10.1145/2783258

      Copyright © 2015 Owner/Author

      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 August 2015

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader