skip to main content
research-article

DeltaCon: Principled Massive-Graph Similarity Function with Attribution

Authors Info & Claims
Published:24 February 2016Publication History
Skip Abstract Section

Abstract

How much has a network changed since yesterday? How different is the wiring of Bob’s brain (a left-handed male) and Alice’s brain (a right-handed female), and how is it different? Graph similarity with given node correspondence, i.e., the detection of changes in the connectivity of graphs, arises in numerous settings. In this work, we formally state the axioms and desired properties of the graph similarity functions, and evaluate when state-of-the-art methods fail to detect crucial connectivity changes in graphs. We propose DeltaCon, a principled, intuitive, and scalable algorithm that assesses the similarity between two graphs on the same nodes (e.g., employees of a company, customers of a mobile carrier). In conjunction, we propose DeltaCon-Attr, a related approach that enables attribution of change or dissimilarity to responsible nodes and edges. Experiments on various synthetic and real graphs showcase the advantages of our method over existing similarity measures. Finally, we employ DeltaCon and DeltaCon-Attr on real applications: (a) we classify people to groups of high and low creativity based on their brain connectivity graphs, (b) do temporal anomaly detection in the who-emails-whom Enron graph and find the top culprits for the changes in the temporal corporate email graph, and (c) recover pairs of test-retest large brain scans ( ∼17M edges, up to 90M edges) for 21 subjects.

References

  1. Leman Akoglu*, Duen Horng Chau*, U. Kang*, Danai Koutra*, and Christos Faloutsos. 2012. OPAvion: mining and visualization in large graphs. In Proceedings of the 2012 ACM International Conference on Management of Data (SIGMOD). ACM, 717--720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Leman Akoglu and Christos Faloutsos. 2010. Event detection in time series of mobile communication graphs. In 27th Army Science Conference. 77--79.Google ScholarGoogle Scholar
  3. Leman Akoglu, Hanghang Tong, and Danai Koutra. 2014. Graph-based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 3, 626--688. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Aldous and James Allen Fill. 2002. Reversible Markov Chains and Random Walks on Graphs. (2002). Unfinished monograph, recompiled 2014. Retrieved from http://www.stat.berkeley.edu/∼aldous/ RWG/book.html.Google ScholarGoogle Scholar
  5. Basak Alper, Benjamin Bach, Nathalie Henry Riche, Tobias Isenberg, and Jean-Daniel Fekete. 2013. Weighted graph comparison techniques for brain connectivity analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13). ACM, New York, NY, USA, 483--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Keith Andrews, Martin Wohlfahrt, and Gerhard Wurzinger. 2009. Visual graph comparison. In Proceedings of the 13th International Conference on Information Visualization - Showcase (IV). IEEE, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mohsen Bayati, David F. Gleich, Amin Saberi, and Ying Wang. 2013. Message-passing algorithms for sparse network alignment. 7, 1 (2013), Article 3, 31 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. 2013. Network similarity via multiple social theories. In Proceedings of the IEEE/ACM Conference on Advances in Social Networks Analysis and Mining (ASONAM’13). ACM, 1439--1440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. CopyCatch: Stopping group attacks by spotting lockstep behavior in social networks. In Proceedings of the 22nd International Conference on World Wide Web (WWW). ACM, 119--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Karsten M. Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on graphs. In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). IEEE Computer Society, Washington, DC, USA, 74--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Bradde, Alfredo Braunstein, H. Mahmoudi, F. Tria, Martin Weigt, and Riccardo Zecchina. 2010. Aligning graphs and finding substructures by a cavity approach. Europhys. Lett. 89, 3 (2010).Google ScholarGoogle ScholarCross RefCross Ref
  12. Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 1--7 (1998), 107--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Horst Bunke, Peter J. Dickinson, Miro Kraetzl, and Walter D. Wallis. 2006. A Graph-Theoretic Approach to Enterprise Network Dynamics (PCS). Birkhauser. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Rajmonda Sulo Caceres, Tanya Y. Berger-Wolf, and Robert Grossman. 2011. Temporal scale of processes in dynamic networks. In Proceedings of the Data Mining Workshops (ICDMW) at the 11th IEEE International Conference on Data Mining (ICDM). 925--932. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Duen Horng Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and Christos Faloutsos. 2011. Large scale graph mining and inference for malware detection. In Proceedings of the 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 131--142.Google ScholarGoogle Scholar
  16. Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti. 2009. Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, (June 2009), 747--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artificial Intell. 18, 3 (2004), 265--298.Google ScholarGoogle ScholarCross RefCross Ref
  18. Fabrizio Costa and Kurt De Grave. 2010. Fast neighborhood subgraph pairwise distance kernel. In Proceedings of the 26th International Conference on Machine Learning. Omnipress, 255--262.Google ScholarGoogle Scholar
  19. Peter Doyle and James Laurie Snell. 1984. Random Walks and Electric Networks. Vol. 22. Mathematical Association America, New York.Google ScholarGoogle Scholar
  20. Hewayda Elghawalby and Edwin R. Hancock. 2008. Measuring graph similarity using spectral geometry. In Proceedings of the 5th International Conference on Image Analysis and Recognition (ICIAR). Springer, 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Cesim Erten, Philip J. Harding, Stephen G. Kobourov, Kevin Wampler, and Gary Yee. 2003. GraphAEL: graph animations with evolving layouts. In Proceedings of the 11th International Symposium in Graph Drawing (GD), Perugia, Italy, Vol. 2912. 98--110.Google ScholarGoogle Scholar
  22. Miroslav Fiedler. 1973. Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 98 (1973), 298--305.Google ScholarGoogle ScholarCross RefCross Ref
  23. Linton C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35--41.Google ScholarGoogle ScholarCross RefCross Ref
  24. Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. 2003. On graph kernels: hardness results and efficient alternatives. In Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop. Springer, 129--143.Google ScholarGoogle ScholarCross RefCross Ref
  25. Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Christos Faloutsos. 2015. Linearized and single-pass belief propagation. Proc. VLDB Endow. 8, 5 (2015), 581--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Michael Gleicher, Danielle Albers Szafir, Rick Walker, Ilir Jusufi, Charles D. Hansen, and Jonathan C. Roberts. 2011. Visual comparison for information visualization. Inf. Visualization 10, 4 (October 2011), 289--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. William R. Gray, John A. Bogovic, Joshua T. Vogelstein, Bennett A. Landman, Jerry L. Prince, and R. Jacob Vogelstein. 2012. Magnetic resonance connectome automated pipeline: an overview. IEEE Pulse 3, 2 (2012), 42--48.Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. 2004. Propagation of trust and distrust. In Proceedings of the 13th International Conference on World Wide Web (WWW), New York, NY. ACM, 403--412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Mountaz Hascoët and Pierre Dragicevic. 2012. Interactive graph matching and visual comparison of graphs and clustered graphs. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI’12). ACM, New York, NY, USA, 522--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Taher H. Haveliwala. 2003. Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. IEEE Trans. Knowl. Data Eng. 15, 4 (2003), 784--796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Keith Henderson, Tina Eliassi-Rad, Christos Faloutsos, Leman Akoglu, Lei Li, Koji Maruhashi, B. Aditya Prakash, and Hanghang Tong. 2010. Metric forensics: a multi-level approach for mining volatile graphs. In Proceedings of the 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). ACM, 163--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. 2004. Cyclic pattern kernels for predictive graph mining. In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). ACM, 158--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tsuyoshi Ide and Hisashi Kashima. 2004. Eigenspace-based anomaly detection in computer systems. In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 440--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context similarity. In Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Edmonton, Alberta. ACM, 538--543. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. U. Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. 2014. Net-ray: visualizing and mining web-scale graphs. In Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). 348--361.Google ScholarGoogle ScholarCross RefCross Ref
  36. U. Kang, Hanghang Tong, and Jimeng Sun. 2012. Fast random walk graph kernel. In Proceedings of the 12th SIAM International Conference on Data Mining (SDM). 828--838.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. Karypis and V. Kumar. 1995. METIS: unstructured graph partitioning and sparse matrix ordering system. The University of Minnesota (1995).Google ScholarGoogle Scholar
  38. Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. 2003. Marginalized kernels between labeled graphs. In Proceedings of the 20th International Conference on Machine Learning. AAAI Press, 321--328.Google ScholarGoogle Scholar
  39. Alexander K. Kelmans. 1976. Comparison of graphs by their number of spanning trees. Discrete Math. 16, 3 (1976), 241--261.Google ScholarGoogle ScholarCross RefCross Ref
  40. Nguyen Lu Dang Khoa and Sanjay Chawla. 2010. Robust outlier detection using commute time and eigenspace embedding. In Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Hyderabad, India (Lecture Notes in Computer Science), Vol. 6119. Springer, 422--434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Heung-Nam Kim and Abdulmotaleb El Saddik. 2011. Personalized pagerank vectors for tag recommendations: inside folkrank. In Proceedings of the5th ACM Conference on Recommender Systems. ACM, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (1999), 604--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Bryan Klimt and Yiming Yang. 2004. Introducing the enron corpus. In Proceedings of the 1st Conference on Email and Anti-Spam.Google ScholarGoogle Scholar
  44. Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. 2014. VoG: summarizing and understanding large graphs. In Proceedings of the 14th SIAM International Conference on Data Mining (SDM). SIAM, Philadelphia, PA, 91--99.Google ScholarGoogle ScholarCross RefCross Ref
  45. Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. 2015. Summarizing and understanding large graphs. In Statistical Analysis and Data Mining. John Wiley & Sons, Inc.Google ScholarGoogle Scholar
  46. Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Kenneth Pao, and Christos Faloutsos. 2011. Unifying guilt-by-association approaches: theorems and fast algorithms. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD). 245--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Danai Koutra, Evangelos E. Papalexakis, and Christos Faloutsos. 2012. TensorSplat: spotting latent anomalies in time. In 16th Panhellenic Conference on Informatics (PCI). IEEE, 144--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Danai Koutra, Vasileios Koutras, B. Aditya Prakash, and Christos Faloutsos. 2013c. Patterns amongst competing task frequencies: super-linearities, and the Almond-DG model. In Proceedings of the 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Springer Science + Business Media, 201--212.Google ScholarGoogle ScholarCross RefCross Ref
  49. Danai Koutra, Hanghang Tong, and David Lubensky. 2013a. Big-align: fast bipartite graph alignment. In Proceedings of the 14th IEEE International Conference on Data Mining (ICDM). 389--398.Google ScholarGoogle ScholarCross RefCross Ref
  50. Danai Koutra, Joshua Vogelstein, and Christos Faloutsos. 2013b. DeltaCon: a principled massive-graph similarity function. In Proceedings of the 13th SIAM International Conference on Data Mining (SDM). 162--170.Google ScholarGoogle ScholarCross RefCross Ref
  51. Jay Yoon Lee, U. Kang, Danai Koutra, and Christos Faloutsos. 2013. Fast anomaly detection despite the duplicates. In Proceedings of the 22nd International Conference on World Wide Web (WWW Companion Volume). International World Wide Web Conferences Steering Committee, 195--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, and Christos Faloutsos. 2005. Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD). 133--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: densification and shrinking diameters. IEEE Trans. Knowl. Data Eng. 1, 1 (March 2007), Article No. 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and Tianyi Wu. 2010. Fast computation of simrank for static and dynamic information networks. In Proceedings of the 13th International Conference on Extending Database Technology (EDBT’10). ACM, New York, NY, 465--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Geng Li, Murat Semerci, Bulent Yener, and Mohammed J. Zaki. 2011. Graph classification via topological and label attributes. In Proceedings of the 9th International Workshop on Mining and Learning with Graphs (MLG).Google ScholarGoogle Scholar
  56. Owen Macindoe and Whitman Richards. 2010. Graph comparison using fine structure analysis. In Proceedings of the International Conference on Privacy, Security, Risk and Trust (SocialCom/PASSAT). IEEE, 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Pierre Mahé and Jean-Philippe Vert. 2009. Graph kernels based on tree patterns for molecules. Mach. Learn. 75, 1 (April 2009), 3--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ching-Hao Mao, Chung-Jung Wu, Evangelos E Papalexakis, Christos Faloutsos, and Tien-Cheu Kao. 2014. MalSpot: multi2 malicious network behavior patterns analysis. In PAKDD. 1--14.Google ScholarGoogle Scholar
  59. Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. Multiaspectforensics: pattern mining on large-scale heterogeneous networks with tensor analysis. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 203--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, and Christos Faloutsos. 2009. SNARE: a link analytic system for graph labeling and risk detection. In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 1265--1274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Mark E. J. Newman. 2005. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 1 (2005), 39--54.Google ScholarGoogle ScholarCross RefCross Ref
  62. Caleb C. Noble and Diane J. Cook. 2003. Graph-based anomaly detection. In Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). ACM, 631--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. OCP. 2014. Open Connectome Project. Retrieved from http://www.openconnectomeproject.org.Google ScholarGoogle Scholar
  64. Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. 2008. Web graph similarity for anomaly detection. J. Internet Services Applications 1, 1 (2008), 19--30.Google ScholarGoogle ScholarCross RefCross Ref
  65. Mitchell Peabody. 2003. Finding Groups of Graphs in Databases. Master’s thesis. Drexel University, Philadelphia, PA.Google ScholarGoogle Scholar
  66. Jan Ramon and Thomas Gärtner. 2003. Expressivity versus efficiency of graph kernels. In Proceedings of the 1st International Workshop on Mining Graphs, Trees and Sequences. 65--74.Google ScholarGoogle Scholar
  67. Stephen Ranshous, Shitian Shen, Danai Koutra, Steven Harenberg, Christos Faloutsos, and Nagiza F. Samatova. 2015. Anomaly detection in dynamic networks: a survey. WIREs Comp Stat 7, 223--247. DOI:10.1002/wics.1347Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. William Gray Roncal, Zachary H. Koterba, Disa Mhembere, Dean Kleissas, Joshua T. Vogelstein, Randal C. Burns, Anita R. Bowles, Dimitrios K. Donavos, Sephira Ryman, Rex E. Jung, Lei Wu, Vince D. Calhoun, and R. Jacob Vogelstein. 2013. MIGRAINE: MRI graph reliability analysis and inference for connectomics. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP).Google ScholarGoogle Scholar
  69. Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. 2015. TimeCrunch: interpretable dynamic graph summarization. In Proceedings of the 21st ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 1055--1064. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Nino Shervashidze and Karsten Borgwardt. 2009. Fast subtree kernels on graphs. In Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS). Vancouver, BC. 1660--1668.Google ScholarGoogle Scholar
  71. Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, (November 2011), 2539--2561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS 2009), Vol. 5. Journal of Machine Learning Research, 488--495.Google ScholarGoogle Scholar
  73. SNAP. 2016. Retrieved http://snap.stanford.edu/data/index.html#web. Last accessed: 2016.Google ScholarGoogle Scholar
  74. Kumar Sricharan and Kamalika Das. 2014. Localizing anomalous changes in time-evolving graphs. In Proceedings of the 2014 ACM International Conference on Management of Data (SIGMOD). ACM, 1347--1358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, and Christos Faloutsos. 2012. Gelling, and melting, large graphs by edge manipulation. In Proceedings of the 21st ACM Conference on Information and Knowledge Management (CIKM). ACM, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Frank van Ham, Hans-Jörg Schulz, and Joan M. Dimicco. 2009. Honeycomb: visual analysis of large scale social networks. In Human-Computer Interaction - INTERACT 2009. Lecture Notes in Computer Science, Vol. 5727. Springer, Berlin, 429--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Imre Kondor, and Karsten M. Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11 (2010), 1201--1242. Google ScholarGoogle ScholarCross RefCross Ref
  78. Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009. On the evolution of user interaction in facebook. In Proceedings of the 2nd ACM SIGCOMM Workshop on Social Networks (WOSN). 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Heng Wang, Minh Tang, Y. Park, and C. E. Priebe. 2014. Locality statistics for anomaly detection in time series of graphs. IEEE Trans. Signal Process. 62, 3 (February 2014), 703--717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Ye Wang, Srinivasan Parthasarathy, and Shirish Tatikonda. 2011. Locality sensitive outlier detection: a ranking driven approach. In Proceedings of the 27th International Conference on Data Engineering (ICDE). 410--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Richard C. Wilson and Ping Zhu. 2008. A study of graph spectra for comparing graphs and trees. J. Pattern Recognit. 41, 9 (2008), 2833--2841. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Ömer Nebil Yaveroğlu, Noël Malod-Dognin, Darren Davis, Zoran Levnajić, Vuk Janjic, Rasa Karapandza, Aleksandar Stojmirovic, and Nataša Pržulj. 2014. Revealing the hidden language of complex networks. Scientific Reports 4, Article number: 4547.Google ScholarGoogle Scholar
  83. Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. 2003. Understanding belief propagation and its generalizations. Exploring Artificial Intelligence in the New Millennium 239--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Weiren Yu, Xuemin Lin, Wenjie Zhang, Lijun Chang, and Jian Pei. 2013. More is simpler: effectively and efficiently assessing node-pair similarities based on hyperlinks. Proc. VLDB Endow. 7, 1 (2013), 13--24. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DeltaCon: Principled Massive-Graph Similarity Function with Attribution

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Knowledge Discovery from Data
      ACM Transactions on Knowledge Discovery from Data  Volume 10, Issue 3
      February 2016
      358 pages
      ISSN:1556-4681
      EISSN:1556-472X
      DOI:10.1145/2888412
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 February 2016
      • Accepted: 1 September 2015
      • Revised: 1 August 2015
      • Received: 1 May 2014
      Published in tkdd Volume 10, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader