skip to main content
research-article

BackFi: High Throughput WiFi Backscatter

Published:17 August 2015Publication History
Skip Abstract Section

Abstract

We present BackFi, a novel communication system that enables high throughput, long range communication between very low power backscatter devices and WiFi APs using ambient WiFi transmissions as the excitation signal. Specifically, we show that it is possible to design devices and WiFi APs such that the WiFi AP in the process of transmitting data to normal WiFi clients can decode backscatter signals which the devices generate by modulating information on to the ambient WiFi transmission. We show via prototypes and experiments that it is possible to achieve communication rates of up to 5 Mbps at a range of 1 m and 1 Mbps at a range of 5 meters. Such performance is an order to three orders of magnitude better than the best known prior WiFi backscatter system [27,25]. BackFi design is energy efficient, as it relies on backscattering alone and needs insignificant power, hence the energy consumed per bit is small.

Skip Supplemental Material Section

Supplemental Material

p283-bharadia.webm

webm

156.4 MB

References

  1. Analog Devices ADG904 RF SP4T. http://www.analog.com/media/en/technical-documentation/data-sheets/ADG904_904R.pdf .Google ScholarGoogle Scholar
  2. Cypress Semiconductor CY62146EV30 SRAM. http://www.cypress.com/?docID=48695 .Google ScholarGoogle Scholar
  3. EPC Class-1 Gen-2 UHF RFID. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf .Google ScholarGoogle Scholar
  4. ThingMagic. Mercury6e rfid reader module. http://www.thingmagic.com/embedded-rfid-readers.Google ScholarGoogle Scholar
  5. User Guide: KC705 Evaluation Board for the Kintex-7 FPGA. http://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf.Google ScholarGoogle Scholar
  6. WARP Project. http://warpproject.org.Google ScholarGoogle Scholar
  7. E. Aryafar, M. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chiang. Midu: enabling mimo full duplex. In Proceedings of the 18th annual international conference on Mobile computing and networking, Mobicom '12, pages 257--268, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Bharadia, K. R. Joshi, and S. Katti. Full duplex backscatter. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, page 4. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Bharadia and S. Katti. Fastforward: Fast and constructive full duplex relays. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM '14, pages 199--210, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Bharadia and S. Katti. Full duplex mimo radios. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 359--372, Seattle, WA, Apr. 2014. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Bharadia, E. McMilin, and S. Katti. Full duplex radios. In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, SIGCOMM '13, pages 375--386, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Brennan. Linear diversity combining techniques. Proceedings of the IEEE, 91(2):331--356, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop: An energy-aware runtime for computational rfid. In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI'11, pages 197--210, Berkeley, CA, USA, 2011. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Buettner and D. Wetherall. A software radio-based uhf rfid reader for phy/mac experimentation. In RFID (RFID), 2011 IEEE International Conference on, pages 134--141, April 2011.Google ScholarGoogle ScholarCross RefCross Ref
  15. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving single channel, full duplex wireless communication. In Proceedings of the sixteenth annual international conference on Mobile computing and networking, MobiCom '10, pages 1--12, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. Duarte, C. Dick, and A. Sabharwal. Experiment-driven characterization of full-duplex wireless systems. CoRR, abs/1107.1276, 2011.Google ScholarGoogle Scholar
  17. M. Durante and S. Mahlknecht. An ultra low power wakeup receiver for wireless sensor nodes. In Sensor Technologies and Applications, 2009. SENSORCOMM '09. Third International Conference on, pages 167--170, June 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J. Ensworth and M. Reynolds. Every smart phone is a backscatter reader: Modulated backscatter compatibility with bluetooth 4.0 low energy (ble) devices. In RFID (RFID), 2015 IEEE International Conference on, pages 78--85, April 2015.Google ScholarGoogle ScholarCross RefCross Ref
  19. E. Everett, A. Sahai, and A. Sabharwal. Passive self-interference suppression for full-duplex infrastructure nodes. CoRR, abs/1302.2185, 2013.Google ScholarGoogle Scholar
  20. K. Gudan, S. Chemishkian, J. J. Hull, M. S. Reynolds, and S. Thomas. Feasibility of wireless sensors using ambient 2.4ghz rf energy.Google ScholarGoogle Scholar
  21. J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the limits of effective hybrid micro-energy harvesting on mobile crfid sensors. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, MobiSys '10, pages 195--208, New York, NY, USA, 2010. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Gummeson, P. Zhang, and D. Ganesan. Flit: A bulk transmission protocol for rfid-scale sensors. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys '12, pages 71--84, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Gupta, J. Min, and I. Rhee. Wifox: Scaling wifi performance for large audience environments. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, CoNEXT '12, pages 217--228, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Ishizaki, H. Ikeda, Y. Yoshida, T. Maeda, T. Kuroda, and M. Mizuno. A battery-less wifi-ber modulated data transmitter with ambient radio-wave energy harvesting. In VLSI Circuits (VLSIC), 2011 Symposium on, pages 162--163, June 2011.Google ScholarGoogle Scholar
  25. M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha. Practical, real-time, full duplex wireless. MobiCom '11, pages 301--312, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. Wi-fi backscatter: Internet connectivity for rf-powered devices. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM '14, pages 607--618, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient backscatter: Wireless communication out of thin air. In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM '13, pages 39--50, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Mikeka, H. Arai, A. Georgiadis, and A. Collado. Dtv band micropower rf energy-harvesting circuit architecture and performance analysis. In RFID-Technologies and Applications (RFID-TA), 2011 IEEE International Conference on, pages 561--567, Sept 2011.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. Nikitin and K. Rao. Theory and measurement of backscattering from rfid tags. Antennas and Propagation Magazine, IEEE, 48(6):212--218, Dec 2006.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Oh, N. Roberts, and D. Wentzloff. A 116nw multi-band wake-up receiver with 31-bit correlator and interference rejection. In Custom Integrated Circuits Conference (CICC), 2013 IEEE, pages 1--4, Sept 2013.Google ScholarGoogle ScholarCross RefCross Ref
  31. U. Olgun, C.-C. Chen, and J. Volakis. Design of an efficient ambient wifi energy harvesting system. Microwaves, Antennas Propagation, IET, 6(11):1200--1206, August 2012.Google ScholarGoogle Scholar
  32. A. Parks and J. Smith. Sifting through the airwaves: Efficient and scalable multiband rf harvesting. In RFID (IEEE RFID), 2014 IEEE International Conference on, pages 74--81, April 2014.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging ambient backscatter communication. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM '14, pages 619--630, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers. A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation, 9(1):21, 2012.Google ScholarGoogle Scholar
  35. N. Pletcher, S. Gambini, and J. Rabaey. A 52 micro w wake-up receiver with - 72 dbm sensitivity using an uncertain-if architecture. Solid-State Circuits, IEEE Journal of, 44(1):269--280, Jan 2009.Google ScholarGoogle Scholar
  36. N. Pletcher and J. M. Rabaey. Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks. PhD thesis, EECS Department, University of California, Berkeley, May 2008.Google ScholarGoogle Scholar
  37. J. Proakis. Digital Communications. McGraw-Hill Series in Electrical and Computer Engineering. Computer Engineering. McGraw-Hill, 2001.Google ScholarGoogle Scholar
  38. B. Radunovic, D. Gunawardena, P. Key, A. Proutiere, N. Singh, V. Balan, and G. Dejean. Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In Wireless Mesh Networks (WIMESH 2010), 2010 Fifth IEEE Workshop on, pages 1 --6, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  39. N. Roberts and D. Wentzloff. A 98nw wake-up radio for wireless body area networks. In Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE, pages 373--376, June 2012.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan. Measurement-based characterization of 802.11 in a hotspot setting. In Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis, E-WIND '05, pages 5--10, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rohde & Schwarz. Rohde & Schwarz Vector Network Analyzer User Manual (ZNB8 4 port), 2012.Google ScholarGoogle Scholar
  42. A. Sahai, G. Patel, C. Dick, and A. Sabharwal. On the impact of phase noise on active cancellation in wireless full-duplex. CoRR, abs/1212.5462, 2012.Google ScholarGoogle Scholar
  43. A. Sample and J. Smith. Experimental results with two wireless power transfer systems. In Radio and Wireless Symposium, 2009. RWS '09. IEEE, pages 16--18, Jan 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Sample, D. Yeager, P. Powledge, and J. Smith. Design of a passively-powered, programmable sensing platform for uhf rfid systems. In RFID, 2007. IEEE International Conference on, pages 149--156, March 2007.Google ScholarGoogle ScholarCross RefCross Ref
  45. A. P. Sample, A. N. Parks, S. Southwood, and J. R. Smith. Wireless ambient radio power. In Wirelessly Powered Sensor Networks and Computational RFID, pages 223--234. Springer, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  46. A. Schulman, D. Levin, and N. Spring. On the fidelity of 802.11 packet traces. In Proceedings of the 9th International Conference on Passive and Active Network Measurement, PAM'08, pages 132--141, Berlin, Heidelberg, 2008. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. Shigeta, T. Sasaki, D. M. Quan, Y. Kawahara, R. J. Vyas, M. M. Tentzeris, and T. Asami. Ambient rf energy harvesting sensor device with capacitor-leakage-aware duty cycle control. Sensors Journal, IEEE, 13(8):2973--2983, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  48. S. Thomas and M. Reynolds. A 96 mbit/sec, 15.5 pj/bit 16-qam modulator for uhf backscatter communication. In RFID (RFID), 2012 IEEE International Conference on, pages 185--190, April 2012.Google ScholarGoogle ScholarCross RefCross Ref
  49. J. Wang, H. Hassanieh, D. Katabi, and P. Indyk. Efficient and reliable low-power backscatter networks. SIGCOMM Comput. Commun. Rev., 42(4):61--72, Aug. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. D. Yeager, P. Powledge, R. Prasad, D. Wetherall, and J. Smith. Wirelessly-charged uhf tags for sensor data collection. In RFID, 2008 IEEE International Conference on, pages 320--327, April 2008.Google ScholarGoogle ScholarCross RefCross Ref
  51. H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A batteryless computational rfid and sensing platform. 2011.Google ScholarGoogle Scholar
  52. J. Zhang, P. Orlik, Z. Sahinoglu, A. Molisch, and P. Kinney. Uwb systems for wireless sensor networks. Proceedings of the IEEE, 97(2):313--331, Feb 2009.Google ScholarGoogle ScholarCross RefCross Ref
  53. P. Zhang and D. Ganesan. Enabling bit-by-bit backscatter communication in severe energy harvesting environments. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 345--357, Seattle, WA, Apr. 2014. USENIX Association. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. Ekhonet: High speed ultra low-power backscatter for next generation sensors. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom '14, pages 557--568, New York, NY, USA, 2014. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. BackFi: High Throughput WiFi Backscatter

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader