skip to main content
research-article

A Non-Parametric Factor Microfacet Model for Isotropic BRDFs

Published:28 July 2016Publication History
Skip Abstract Section

Abstract

We investigate the expressiveness of the microfacet model for isotropic bidirectional reflectance distribution functions (BRDFs) measured from real materials by introducing a non-parametric factor model that represents the model’s functional structure but abandons restricted parametric formulations of its factors. We propose a new objective based on compressive weighting that controls rendering error in high-dynamic-range BRDF fits better than previous factorization approaches. We develop a simple numerical procedure to minimize this objective and handle dependencies that arise between microfacet factors. Our method faithfully captures a more comprehensive set of materials than previous state-of-the-art parametric approaches yet remains compact (3.2KB per BRDF). We experimentally validate the benefit of the microfacet model over a naïve orthogonal factorization and show that fidelity for diffuse materials is modestly improved by fitting an unrestricted shadowing/masking factor. We also compare against a recent data-driven factorization approach [Bilgili et al. 2011] and show that our microfacet-based representation improves rendering accuracy for most materials while reducing storage by more than 10 ×.

Skip Supplemental Material Section

Supplemental Material

References

  1. Sameer Agarwal, Keir Mierle, and Others. 2014. Ceres Solver. http://ceres-solver.org. (2014).Google ScholarGoogle Scholar
  2. Michael Ashikhmin and Simon Premozze. 2007. Distribution-Based BRDFs. Technical Report. Department of Computer Science, University of Utah.Google ScholarGoogle Scholar
  3. Michael Ashikhmin and Peter Shirley. 2000. An anisotropic phong BRDF model. J. Graph. Tools 5, 2 (Feb. 2000), 25--32. DOI:http://dx.doi.org/10.1080/10867651.2000.10487522 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Michael Ashikmin, Simon Premože, and Peter Shirley. 2000. A microfacet-based BRDF generator. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing Co., New York, NY, 65--74. DOI:http://dx.doi.org/10.1145/344779.344814 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Mahdi Bagher, Cyril Soler, and Nicolas Holzschuch. 2012. Accurate fitting of measured reflectances using a shifted gamma micro-facet distribution. Comput. Graph. Forum 31, 4 (June 2012), 1509--1518. DOI:http://dx.doi.org/10.1111/j.1467-8659.2012.03147.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Aner Ben-Artzi, Ryan Overbeck, and Ravi Ramamoorthi. 2006. Real-time BRDF editing in complex lighting. ACM Trans. Graph. 25, 3 (July 2006), 10. DOI:http://dx.doi.org/10.1145/1141911.1141979 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ahmet Bilgili, Aydin Öztürk, and Murat Kurt. 2011. A general BRDF representation based on tensor decomposition. Comput. Graph. Forum 30, 8 (2011). http://dblp.uni-trier.de/db/journals/cgf/cgf30.html#BilgiliOK11Google ScholarGoogle Scholar
  8. James F. Blinn. 1977. Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 2 (July 1977), 192--198. DOI:http://dx.doi.org/10.1145/965141.563893 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. C. Bourlier, G. Berginc, and Joseph Saillard. 2002. One- and two-dimensional shadowing functions for any height and slope stationary uncorrelated surface in the monostatic and bistatic configurations. IEEE Trans. Antenna. Propagat. 50, 3 (2002), 312--324. DOI:http://dx.doi.org/10.1109/8.999622Google ScholarGoogle ScholarCross RefCross Ref
  10. G. S. Brown. 1980. Shadowing by non-Gaussian random surfaces. IEEE Trans. Antenna. Propagat. 28, 6 (1980), 788--790. DOI:http://dx.doi.org/10.1109/TAP.1980.1142437Google ScholarGoogle ScholarCross RefCross Ref
  11. Brent Burley. 2012. Physically-Based Shading at Disney. Technical Report. Walt Disney Animation Studios.Google ScholarGoogle Scholar
  12. R. J. Carroll and D. Ruppert. 1998. Translation and Weighting in Regression. Chapman and Hall, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Robert L. Cook and Kenneth E. Torrance. 1981. A reflectance model for computer graphics. SIGGRAPH Comput. Graph. 15, 3 (Aug. 1981), 307--316. DOI:http://dx.doi.org/10.1145/965161.806819 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Paul Debevec. 2001. Light Probe Image Gallery. http://www.pauldebevec.com/Probes/. (2001).Google ScholarGoogle Scholar
  15. Paul Debevec. 2008. High-Resolution Light Probe Image Gallery. http://gl.ict.usc.edu/Data/HighResProbes/. (2008).Google ScholarGoogle Scholar
  16. Julie Dorsey, Holly Rushmeier, and Franois Sillion. 2008. Digital Modeling of Material Appearance. Morgan Kaufmann Inc., San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jonathan Dupuy, Eric Heitz, Jean-Claude Iehl, Pierre Poulin, and Victor Ostromoukhov. 2015. Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations. Comput. Graph. Forum (2015), 10. https://hal.inria.fr/hal-01168516 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. EPA. 2003. Method 8000C, SW846, Revision 3. Technical Report. U.S. Environmental Protetction Agency. http://www.epa.gov/osw/hazard/testmethods/pdfs/8000c_v3.pdf.Google ScholarGoogle Scholar
  19. Abhijeet Ghosh, Tim Hawkins, Pieter Peers, Sune Frederiksen, and Paul Debevec. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, Article 139 (Dec. 2008), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Franklin A. Graybill and Hariharan K. Iyer. 1994. Regression Analysis: Concepts and Applications. Duxbury Press, Belmont, CA.Google ScholarGoogle Scholar
  21. Jan Kautz and Michael D. McCool. 1999. Interactive rendering with arbitrary BRDFs using separable approximations. In Rendering Techniques. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tamara G. Kolda and Brett W. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (Aug. 2009), 455--500. DOI:http://dx.doi.org/10.1137/07070111X Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Greenberg. 1997. Non-linear approximation of reflectance functions. In Proceedings of SIGGRAPH. ACM Press/Addison-Wesley Publishing Co., New York, NY, 117--126. DOI:http://dx.doi.org/10.1145/258734.258801 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wojciech Matusik, Hanspeter Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. 2004. Efficient BRDF importance sampling using a factored representation. ACM Trans. Graph. 23, 3 (Aug. 2004), 496--505. DOI:http://dx.doi.org/10.1145/1015706.1015751 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. István Lazányi and László Szirmay-Kalos. 2005. Fresnel term approximations for metals. In WSCG (Short Papers) (2005-08-01). 77--80.Google ScholarGoogle Scholar
  27. Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for non-negative matrix factorization. In NIPS. MIT Press, Cambridge, MA, 556--562.Google ScholarGoogle Scholar
  28. Joakim Löw, Joel Kronander, Anders Ynnerman, and Jonas Unger. 2012. BRDF models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. 31, 1 (January 2012), 9:1--9:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Kenneth E. Torrance, and Donald P. Greenberg. 1999. Image-based BRDF measurement including human skin. In Proceedings of the 10th Eurographics Conference on Rendering (EGWR’99). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 131--144. DOI:http://dx.doi.org/10.2312/EGWR/EGWR99/131-144 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003. A data-driven reflectance model. In ACM SIGGRAPH 2003 Papers (SIGGRAPH’03). ACM, New York, NY, 759--769. DOI:http://dx.doi.org/10.1145/1201775.882343 Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent Burley, and Adam Martinez. 2012. Practical physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses (SIGGRAPH’12). ACM, New York, NY, Article 10, 7 pages. DOI:http://dx.doi.org/10.1145/2343483.2343493 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Michael D. McCool, Jason Ang, and Anis Ahmad. 2001. Homomorphic factorization of BRDFs for high-performance rendering. In SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Nathan Srebro Nati and Tommi Jaakkola. 2003. Weighted low-rank approximations. In 20th International Conference on Machine Learning. AAAI Press, 720--727.Google ScholarGoogle Scholar
  34. Addy Ngan, Frédo Durand, and Wojciech Matusik. 2005. Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering. Eurographics Association, 117--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015. On optimal, minimal BRDF sampling for reflectance acquisition. ACM Trans. Graph. 34, 6 (November 2015). DOI:http://dx.doi.org/10.1145/2816795.2818085 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. NIS. 2012. e-Handbook of Statistical Methods. Technical Report. NIST/SEMATECH. http://www.itl.nist.gov/div898/handbook.Google ScholarGoogle Scholar
  37. Romain Pacanowski, Oliver Salazar-Celis, Christophe Schlick, Xavier Granier, Poulin Pierre, and Cuyt Annie. 2012. Rational BRDF. IEEE Trans. Vis. Comput. Graph. 18, 11 (Feb. 2012), 1824--1835. DOI:http://dx.doi.org/10.1109/TVCG.2012.73 Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Matt Pharr and Greg Humphreys. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation (2nd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2007. Numerical Recipes 3rd Edition: The Art of Scientific Computing (3 ed.). Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Fabiano Romeiro, Yuriy Vasilyev, and Todd Zickler. 2008. Passive reflectometry. In Proceedings of the 10th European Conference on Computer Vision: Part IV (ECCV’08). Springer-Verlag, Berlin, 859--872. DOI:http://dx.doi.org/10.1007/978-3-540-88693-8_63 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Christophe Schlick. 1994. An inexpensive BRDF model for physically-based rendering. Comput. Graph. Forum 13 (1994), 233--246.Google ScholarGoogle ScholarCross RefCross Ref
  42. B. Smith. 1967. Geometrical shadowing of a random rough surface. IEEE Trans. Antenna. Propagat. 15, 5 (1967), 668--671. DOI:http://dx.doi.org/10.1109/TAP.1967.1138991Google ScholarGoogle ScholarCross RefCross Ref
  43. Cyril Soler and Jean-Christophe Roche. 2014. High Quality Renderer (HQR). http://artis.imag.fr/∼Cyril.Soler/HQR/. (2014).Google ScholarGoogle Scholar
  44. Mauro Steigleder and Michael D. McCool. 2002. Factorization of the Ashikhmin BRDF for real-time rendering. J. Graph. GPU Game Tools 7, 4 (2002), 61--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Eino-Ville Talvala, Andrew Adams, Mark Horowitz, and Marc Levoy. 2007. Veiling glare in high dynamic range imaging. ACM Trans. Graph. 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. C. Tofallis. 2008. Least squares percentage regression. J. Mod. Appl. Stat. Methods 7 (2008), 526--534.Google ScholarGoogle ScholarCross RefCross Ref
  47. Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9837162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007. Microfacet models for refraction through rough surfaces. In Rendering Techniques. Eurographics Association, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jiaping Wang, Shuang Zhao, Xin Tong, John Snyder, and Baining Guo. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3 (Aug. 2008), 41:1--41:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Halbert White. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 4 (1980).Google ScholarGoogle Scholar

Index Terms

  1. A Non-Parametric Factor Microfacet Model for Isotropic BRDFs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 5
      September 2016
      156 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2965650
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 July 2016
      • Revised: 1 March 2016
      • Accepted: 1 March 2016
      • Received: 1 November 2014
      Published in tog Volume 35, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader