skip to main content
10.1145/2935334.2935348acmconferencesArticle/Chapter ViewAbstractPublication PagesmobilehciConference Proceedingsconference-collections
research-article

Let your body move: a prototyping toolkit for wearable force feedback with electrical muscle stimulation

Published:06 September 2016Publication History

ABSTRACT

Electrical muscle stimulation (EMS) is a promising wearable haptic output technology as it can be miniaturized considerably and delivers a wide range of haptic output. However, prototyping EMS applications is challenging. It requires detailed knowledge and skills about hardware, software, and physiological characteristics. To simplify prototyping with EMS in mobile and wearable situations we present the Let Your Body Move toolkit. It consists of (1) a hardware control module with Bluetooth communication that uses off-the-shelf EMS devices as signal generators, (2) a simple communications protocol to connect mobile devices, and (3) a set of control applications as starting points for EMS prototyping. We describe EMS-specific parameters, electrode placements on the skin, and user calibration. The toolkit was evaluated in a workshop with 10 researchers in haptics. The results show that the toolkit allows to quickly generate non-trivial prototypes. The hardware schematics and software components are available as open source software.

References

  1. Bau, O., Poupyrev, I., Israr, A., and Harrison, C. Teslatouch: Electrovibration for touch surfaces. In Proc. UIST'10 (2010), 283--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Belda-Lois, J.-M., del Horno, S. M., et al. Rehabilitation of gait after stroke: A review towards a top-down approach. Jour. NeuEng. and Reha. 8, 66 (2011).Google ScholarGoogle Scholar
  3. Brave, S., and Dahley, A. intouch: A medium for haptic interpersonal communication. In Ext. Abstr. CHI '97 (1997), 363--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Centofanti, S. K. Application of Muscle/Nerve Stimulation in Health and Disease. Springer Netherlands, Dordrecht, 2008, ch. Electrical, 69--116.Google ScholarGoogle Scholar
  5. Dollar, A. M., and Herr, H. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. Robotics, IEEE Transactions on 24, 1 (2008), 144--158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Farbiz, F., Yu, Z. H., Manders, C., and Ahmad, W. An electrical muscle stimulation haptic feedback for mixed reality tennis game. In posters SIGGRAPH'07 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fialka-Moser, V., Ebenbichler, G., and Gillert, O. Elektrotherapie. Pflaum Physiotherapie. Richard Pflaum Vlg GmbH, 2005.Google ScholarGoogle Scholar
  8. Forsslund, J., Yip, M., and Sallnäs, E.-L. Woodenhaptics: A starting kit for crafting force-reflecting spatial haptic devices. In Proc. TEI'15 (2015), 133--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ha, S., Kim, L., Park, S., Jun, C., and Rho, H. Virtual prototyping enhanced by a haptic interface. {CIRP} Annals - Manufacturing Technology 58, 1 (2009), 135--138.Google ScholarGoogle Scholar
  10. Houben, S., and Marquardt, N. Watchconnect: A toolkit for prototyping smartwatch-centric cross-device applications. In Proc. CHI'15 (2015), 1247--1256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ijzerman, M. J., Stoffers, T. S., In't Groen, F., Klatte, M. A. P., Snoek, G. J., Vorsteveld, J. H. C., Nathan, R. H., and Hermens, H. J. The NESS Handmaster orthosis: restoration of hand function in C5 and stroke patients by means of electrical stimulation. Journal of rehabilitation sciences 9, 3 (1996), 86--89.Google ScholarGoogle Scholar
  12. Ito, K., Shioyama, T., and Kondo, T. Lower-limb Joint Torque and Position Controls by Functional Electrical Stimulation (FES). Complex Medical Engineering (2007), 239--249.Google ScholarGoogle Scholar
  13. Kruijff, E., Schmalstieg, D., and Beckhaus, S. Using neuromuscular electrical stimulation for pseudo-haptic feedback. In Proc. VRST'06 (2006), 316--319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ledo, D., Nacenta, M. A., Marquardt, N., Boring, S., and Greenberg, S. The haptictouch toolkit: Enabling exploration of haptic interactions. In Proc. TEI'12 (2012), 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lopes, P., and Baudisch, P. Muscle-propelled force feedback: Bringing force feedback to mobile devices. In Proc. CHI'13 (2013), 2577--2580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lopes, P., Ion, A., and Baudisch, P. Impacto: Simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In Proc. UIST'15 (2015), 11--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lopes, P., Ion, A., Mueller, W., Hoffmann, D., Jonell, P., and Baudisch, P. Proprioceptive interaction. In Proc. CHI'15 (2015), 939--948. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lopes, P., Jonell, P., and Baudisch, P. Affordance++: Allowing objects to communicate dynamic use. In Proc. CHI'15 (2015), 2515--2524. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lopes, P., Pfeiffer, M., Rohs, M., and Baudisch, B. Let your body move: electrical muscle stimuli as haptics. Prog. IEEE World Haptics (2015).Google ScholarGoogle Scholar
  20. Lopes, P., Pfeiffer, M., Rohs, M., and Baudisch, P. Hands-on Introduction to Interactive Electrical Muscle Stimulation. In CHI EA '16 (2016), 944--947. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lyons, G., Sinkjaer, T., Burridge, J., and Wilcox, D. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. on Neu. Sys. and Reha. Eng. 10, 4 (2002), 260--279.Google ScholarGoogle Scholar
  22. Maeso, S., Reza, M., Mayol, J. A., Blasco, J. A., Guerra, M., Andradas, E., and Plana, M. N. Efficacy of the da vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Annals of surgery 252, 2 (2010), 254--262.Google ScholarGoogle Scholar
  23. Pfeiffer, M., Dünte, T., Schneegass, S., Alt, F., and Rohs, M. Cruise control for pedestrians: Controlling walking direction using electrical muscle stimulation. In Proc. CHI'15 (2015), 2505--2514. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pfeiffer, M., Schneegass, S., and Alt, F. Supporting interaction in public space with electrical muscle stimulation. In Proc. UbiComp'13 (2013), 5--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pfeiffer, M., Schneegass, S., Alt, F., and Rohs, M. Let me grab this: A comparison of ems and vibration for haptic feedback in free-hand interaction. In Proc. AH'14 (2014), 48:1--48:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pfeiffer, M., and Stuerzlinger, W. 3D Virtual Hand Pointing with EMS and Vibration Feedback. 3DUI 2015 (2015), 117--120.Google ScholarGoogle Scholar
  27. Pohl, I. M., and Loke, L. Touch toolkit: A method to convey touch-based design knowledge and skills. In Proc. TEI'14 (2013), 251--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Prochazka, A., Gauthier, M., Wieler, M., and Kenwell, Z. The bionic glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Archives of Physical Medicine and Rehabilitation 78, 6 (1997), 608--614.Google ScholarGoogle ScholarCross RefCross Ref
  29. Prorelax. TENS+EMS DUO. http://www.sanitas-online.de/web/_dokumente/GAs/therapie/752.907-0212_SEM43.pdf. Accessed: 2016-02-04.Google ScholarGoogle Scholar
  30. Reilly, J. P. Applied Bioelectricity: from Electrical Stimulation to Electropathology, vol. 20. Springer, 2009.Google ScholarGoogle Scholar
  31. Strojnik, P., Kralj, A., et al. Programmed six-channel electrical stimulator for complex stimulation of leg muscles during walking. Biomedical Engineering, IEEE Transactions on, 2 (1979), 112--116.Google ScholarGoogle Scholar
  32. Swindells, C., MacLean, K. E., Booth, K. S., and Meitner, M. J. Exploring affective design for physical controls. In Proc. CHI'07 (2007), 933--942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tamaki, E., Miyaki, T., and Rekimoto, J. Possessedhand: Techniques for controlling human hands using electrical muscles stimuli. In Proc. CHI'11 (2011), 543--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Weiss, M., Wacharamanotham, C., Voelker, S., and Borchers, J. Fingerflux: Near-surface haptic feedback on tabletops. In Proc. UIST'11 (2011), 615--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yannier, N., Israr, A., Lehman, J. F., and Klatzky, R. L. Feelsleeve: Haptic feedback to enhance early reading. In Proc. CHI'15 (2015), 1015--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhang, D., Guan, T. H., Widjaja, F., and Ang, W. T. Functional electrical stimulation in rehabilitation engineering: A survey. In Proc. iCREATe'07 (2007), 221--226. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Let your body move: a prototyping toolkit for wearable force feedback with electrical muscle stimulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobileHCI '16: Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services
      September 2016
      567 pages
      ISBN:9781450344081
      DOI:10.1145/2935334

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 September 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate202of906submissions,22%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader