skip to main content
10.1145/2959100.2959157acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
research-article

Representation Learning for Homophilic Preferences

Published:07 September 2016Publication History

ABSTRACT

Users express their personal preferences through ratings, adoptions, and other consumption behaviors. We seek to learn latent representations for user preferences from such behavioral data. One representation learning model that has been shown to be effective for large preference datasets is Restricted Boltzmann Machine (RBM). While homophily, or the tendency of friends to share their preferences at some level, is an established notion in sociology, thus far it has not yet been clearly demonstrated on RBM-based preference models. The question lies in how to appropriately incorporate social network into the architecture of RBM-based models for learning representations of preferences. In this paper, we propose two potential architectures: one that models social network among users as additional observations, and another that incorporates social network into the sharing of hidden units among related users. We study the efficacies of these proposed architectures on publicly available, real-life preference datasets with social networks, yielding useful insights.

Skip Supplemental Material Section

Supplemental Material

p317.mp4

mp4

1.1 GB

References

  1. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines. Cognitive Science, 9(1):147--169, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE, 17(6):734--749, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. X. Amatriain and J. Basilico. Recommender systems in industry: A netflix case study. In Recommender Systems Handbook, pages 385--419. Springer, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  4. R. M. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9(2):75--79, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. TPAMI, 35(8):1798--1828, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. I. Cantador, P. Brusilovsky, and T. Kuflik. 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In RecSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Deng, L. Huang, G. Xu, X. Wu, and Z. Wu. On deep learning for trust-aware recommendations in social networks. TNNLS, (99):1--14, 2016.Google ScholarGoogle Scholar
  8. K. Georgiev and P. Nakov. A non-iid framework for collaborative filtering with restricted Boltzmann machines. In ICML, pages 1148--1156, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Gionis, H. Mannila, T. Mielik\"ainen, and P. Tsaparas. Assessing data mining results via swap randomization. TKDD, 1(3), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Guy. Social recommender systems. In Recommender Systems Handbook, pages 511--543. Springer, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. TOIS, 22(1):5--53, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:2002, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, 29(6):82--97, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Jahrer and A. Töscher. Collaborative filtering ensemble. In KDD Cup, pages 61--74, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Jamali and M. Ester. A matrix factorization technique with trust propagation for recommendation in social networks. In RecSys, pages 135--142, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Recommender systems: an introduction. Cambridge University Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying visual-semantic embeddings with multimodal neural language models. TACL, 2015.Google ScholarGoogle Scholar
  18. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, (8):30--37, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1097--1105, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief net model for visual area v2. In NIPS, pages 873--880, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In SIGIR, pages 203--210, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. H. Ma, I. King, and M. R. Lyu. Learning to recommend with explicit and implicit social relations. TIST, 2(3):29, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: social recommendation using probabilistic matrix factorization. In CIKM, pages 931--940, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, pages 287--296, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval. Cambridge University Press, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, pages 415--444, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Pu, L. Chen, and R. Hu. A user-centric evaluation framework for recommender systems. In RecSys, pages 157--164, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Purushotham, Y. Liu, and C.-c. J. Kuo. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, pages 759--766, 2012.Google ScholarGoogle Scholar
  29. S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold interaction. In ICML, pages 1431--1439, 2014.Google ScholarGoogle Scholar
  30. R. Salakhutdinov and G. E. Hinton. Deep boltzmann machines. In AISTATS, pages 448--455, 2009.Google ScholarGoogle Scholar
  31. R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791--798, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. AutoRec: Autoencoders meet collaborative filtering. In WWW, pages 111--112, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. In NIPS, pages 2222--2230, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. T. Tieleman. Training restricted boltzmann machines using approximations to the likelihood gradient. In ICML, pages 1064--1071, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. Tran, D. Phung, and S. Venkatesh. Thurstonian Boltzmann machines: Learning from multiple inequalities. In ICML, pages 46--54, 2013.Google ScholarGoogle Scholar
  36. C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448--456, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. H. Wang, B. Chen, and W.-J. Li. Collaborative topic regression with social regularization for tag recommendation. In IJCAI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In KDD, pages 1235--1244, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. E. P. Xing, R. Yan, and A. G. Hauptmann. Mining associated text and images with dual-wing harmoniums. In UAI, 2005.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. X. Yang, Y. Guo, Y. Liu, and H. Steck. A survey of collaborative filtering based social recommender systems. Computer Communications, 41:1--10, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Representation Learning for Homophilic Preferences

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        RecSys '16: Proceedings of the 10th ACM Conference on Recommender Systems
        September 2016
        490 pages
        ISBN:9781450340359
        DOI:10.1145/2959100

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 September 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        RecSys '16 Paper Acceptance Rate29of159submissions,18%Overall Acceptance Rate254of1,295submissions,20%

        Upcoming Conference

        RecSys '24
        18th ACM Conference on Recommender Systems
        October 14 - 18, 2024
        Bari , Italy

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader