skip to main content
research-article

An intuitive control space for material appearance

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aittala, M., Weyrich, T., and Lehtinen, J. 2015. Two-shot SVBRDF capture for stationary materials. ACM Trans. Graph. 34, 4 (July), 110:1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. An, X., Tong, X., Denning, J. D., and Pellacini, F. 2011. Appwarp: Retargeting measured materials by appearance-space warping. ACM Trans. Graph. 30, 6 (Dec.), 147:1--147:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ashikhmin, M., Premože, S., and Shirley, P. 2000. A Microfacet-based BRDF Generator. In Proc. of SIGGRAPH '00, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bell, S., Upchurch, P., Snavely, N., and Bala, K. 2013. Opensurfaces: a richly annotated catalog of surface appearance. ACM Trans. Graph. 32, 4 (July), 111:1--111:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time BRDF editing in complex lighting. ACM Trans. Graph. 25, 3 (July), 945--954. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ben-Artzi, A., Egan, K., Durand, F., and Ramamoorthi, R. 2008. A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination. ACM Trans. Graph. 27, 2 (May), 13:1--13:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bousseau, A., O'shea, J. P., Durand, F., Ramamoorthi, R., and Agrawala, M. 2013. Gloss perception in painterly and cartoon rendering. ACM Trans. Graph. 32, 2 (Apr.), 18:1--18:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Boyadzhiev, I., Bala, K., Paris, S., and Adelson, E. 2015. Band-sifting decomposition for image-based material editing. ACM Trans. Graph. 34, 5 (Oct.), 163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Burley, B. 2012. Physically based shading at Disney. In ACM SIGGRAPH Courses.Google ScholarGoogle Scholar
  10. Chaudhuri, S., Kalogerakis, E., Giguere, S., and Funkhouser, T. 2013. AttribIt: Content creation with semantic attributes. In Proc. UIST, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheslack-Postava, E., Wang, R., Akerlund, O., and Pellacini, F. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27, 5 (Dec.), 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Colbert, M., and Pattanaik, S. 2006. BRDF-Shop: Creating Physically Correct Bidirectional Reflectance Distribution Functions. IEEE Computer Graphics and Applications, 30--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cornell, 2001. Reflectance Database - Cornell University Program of Computer Graphics. http://www.graphics.cornell.edu/online/measurements/reflectance/index.html.Google ScholarGoogle Scholar
  14. Du, S.-P., Masia, B., Hu, S.-M., and Gutierrez, D. 2013. A Metric of Visual Comfort for Stereoscopic Motion. ACM Trans. Graph. 32, 6 (Nov.), 222:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ershov, S., Kolchin, K., and Myszkowski, K. 2001. A realistic lighting model for computer animators. Computer Graphics Forum 20, 3.Google ScholarGoogle ScholarCross RefCross Ref
  16. Filip, J., and Vávra, R. 2014. Template-based sampling of anisotropic BRDFs. Computer Graphics Forum (Proc. of Pacific Graphics 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fleming, R. W., Wiebel, C., and Gegenfurtner, K. 2013. Perceptual qualities and material classes. Journal of Vision 13, 8, 9--9.Google ScholarGoogle ScholarCross RefCross Ref
  18. Fores, A., Ferwerda, J., Gu, J., and Zhao, X. 2012. Toward a perceptually based metric for BRDF modeling. In 20th Color and Imaging Conference, CIC'12, 142--148.Google ScholarGoogle Scholar
  19. Garces, E., Agarwala, A., Gutierrez, D., and Hertzmann, A. 2014. A similarity measure for illustration style. ACM Trans. Graph. 33, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gkioulekas, I., Xiao, B., Zhao, S., Adelson, E. H., Zickler, T., and Bala, K. 2013. Understanding the role of phase function in translucent appearance. ACM Trans. Graph. 32, 5 (Oct.), 147:1--147:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Heer, J., and Bostock, M. 2010. Crowdsourcing graphical perception: Using mechanical turk to assess visualization design. In Proc. of CHI'10, CHI '10, 203--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hunter, R. S., and Harold, R. W. 1987. The Measurement of Appearance (2nd Edition). Wiley.Google ScholarGoogle Scholar
  23. ITU. 2002. ITU-R.REC.BT.500-11. Methodology for the subjective assessment of the quality for television pictures. Tech. rep.Google ScholarGoogle Scholar
  24. ITU. 2008. ITU-R.REC.P.910. Subjective audivisual quality assessment methods for multimedia applications. Tech. rep.Google ScholarGoogle Scholar
  25. Jarabo, A., Wu, H., Dorsey, J., Rushmeier, H., and Gutierrez, D. 2014. Effects of approximate filtering on the appearance of bidirectional texture functions. IEEE Transactions on Visualization and Computer Graphics 20, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Keelan, B. 2003. ISO 20462: A psychophysical image quality measurement standard. In Proc. of the SPIE, vol. 5294, 181--189.Google ScholarGoogle Scholar
  27. Kerr, W. B., and Pellacini, F. 2010. Toward evaluating material design interface paradigms for novice users. ACM Trans. Graph. 29, 4 (July), 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Koyama, Y., Sakamoto, D., and Igarashi, T. 2014. Crowd-powered parameter analysis for visual design exploration. In Proc. of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST '14, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Trans. Graph. 25, 3 (July), 735--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mantiuk, R. K., Tomaszewska, A., and Mantiuk, R. 2012. Comparison of four subjective methods for image quality assessment. Computer Graphics Forum 31, 8, 2478--2491. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. Graph. 22, 3 (July), 759--769. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Matusik, W. 2003. A Data-Driven Reflectance Model. PhD thesis, MIT. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. McCool, M. D., Ang, J., and Ahmad, A. 2001. Homomorphic Factorization of BRDFs for High-performance Rendering. In Proc. of SIGGRAPH '01, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. McNamara, A., Mania, K., and Gutierrez, D. 2011. Perception in graphics, visualization, virtual environments and animation. In SIGGRAPH Asia 2011 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 6, 1087--1092.Google ScholarGoogle ScholarCross RefCross Ref
  36. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental Analysis of BRDF Models. In Proc. of EGSR'05, 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ngan, A., Durand, F., and Matusik, W. 2006. Image-driven Navigation of Analytical BRDF Models. In Proc. of EGSR'06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nguyen, C. H., Kyung, M.-H., Lee, J.-H., and Nam, S.-W. 2010. A PCA Decomposition for Real-time BRDF Editing and Relighting with Global Illumination. In Eurographics Symposium on Rendering, 1469--1478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Nielsen, J. B., Jensen, H. W., and Ramamoorthi, R. 2015. On Optimal, Minimal BRDF Sampling for Reflectance Acquisition. ACM Trans. Graph. 34, 6 (Nov.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Parikh, D., and Grauman, K. 2011. Relative attributes. In IEEE International Conference on Computer Vision (ICCV), 503--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Park, J., and Sandberg, I. W. 1991. Universal approximation using radial-basis-function networks. Neural Comput. 3, 2 (June), 246--257.Google ScholarGoogle ScholarCross RefCross Ref
  42. Pellacini, F., Ferwerda, J. A., and Greenberg, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In Proc. of SIGGRAPH'00, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: Towards a new standard for image fidelity. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Rubinstein, M., Gutierrez, D., Sorkine, O., and Shamir, A. 2010. A comparative study of image retargeting. ACM Trans. Graph. 29, 6 (Dec.), 160:1--160:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sigal, L., Mahler, M., Diaz, S., McIntosh, K., Carter, E., Richards, T., and Hodgins, J. 2015. A perceptual control space for garment simulation. ACM Trans. Graph. 34, 4 (July), 117:1--117:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Silverstein, D. A., and Farrell, J. E. 2001. Efficient method for paired comparison. J. Electronic Imaging 10, 2, 394--398.Google ScholarGoogle ScholarCross RefCross Ref
  47. Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., and Guo, B. 2007. Interactive Relighting with Dynamic BRDFs. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM Trans. Graph. 28, 5 (Dec.), 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Tominaga, T., Hayashi, T., Okamoto, J., and Takahashi, A. 2010. Performance comparisons of subjective quality assessment methods for mobile video. In 2nd. International Workshop on Quality Multimedia Experience (QoMEX).Google ScholarGoogle Scholar
  50. Vangorp, P., Laurijssen, J., and Dutré, P. 2007. The influence of shape on the perception of material reflectance. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Westlund, H. B., and Meyer, G. W. 2001. Applying appearance standards to light reflection models. In Proc. of SIGGRAPH '01, 501--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Wills, J., Agarwal, S., Kriegman, D., and Belongie, S. 2009. Toward a perceptual space for gloss. ACM Trans. Graph. 28, 4 (Sept.), 103:1--103:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Yumer, M., Chaudhuri, S., Hodgins, J., and Kara, L. 2015. Semantic shape editing using deformation handles. ACM Trans. Graph. 34 (July), 86:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zell, E., Aliaga, C., Jarabo, A., Zibrek, K., Gutierrez, D., McDonnell, R., and Botsch, M. 2015. To stylize or not to stylize?: The effect of shape and material stylization on the perception of computer-generated faces. ACM Trans. Graph. 34, 6 (Oct.), 184:1--184:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Zickler, T., Ramamoorthi, R., Enrique, S., and Belhumeur, P. N. 2006. Reflectance sharing: Predicting appearance from a sparse set of images of a known shape. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 8, 1287--1302. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An intuitive control space for material appearance

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 6
          November 2016
          1045 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2980179
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 December 2016
          Published in tog Volume 35, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader