skip to main content
research-article

Fast and reliable example-based mesh IK for stylized deformations

Published:05 December 2016Publication History
Skip Abstract Section

Abstract

Example-based shape deformation allows a mesh to be easily manipulated or animated with simple inputs. As the user pulls parts of the shape, the rest of the mesh automatically changes in an intuitive way by drawing from a set of exemplars. This provides a way for virtual shapes or characters to be easily authored and manipulated, or for a set of drawings to be animated with simple inputs. We describe a new approach for example-based inverse kinematic mesh manipulation which generates high quality deformations for a wide range of inputs, and in particular works well even when provided stylized or "cartoony" examples. This approach is fast enough to run in real time, reliably uses the artist's input shapes in an intuitive way even for highly nonphysical deformations, and provides added expressiveness by allowing the input shapes to be utilized in a way which spatially varies smoothly across the resulting deformed mesh. This allows for rich and detailed deformations to be created from a small set of input shapes, and gives an easy way for a set of sketches to be brought alive with simple click-and-drag inputs.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '00, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bergeron, P., and Lachapelle, P. 1985. Controlling facial expressions and body movements in the computer generated animated short 'Tony de Peltrie'. In SigGraph '85 Tutorial Notes, Advanced Computer Animation Course.Google ScholarGoogle Scholar
  4. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1 (Jan.), 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press, New York, NY, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1--38:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Der, K. G., Sumner, R. W., and Popović, J. 2006. Inverse kinematics for reduced deformable models. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 1174--1179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-time data driven deformation using kernel canonical correlation analysis. ACM Transactions on Graphics (TOG) 27, 3, 91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fröhlich, S., and Botsch, M. 2011. Example-driven deformations based on discrete shells. Computer Graphics Forum 30, 8, 2246--2257.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gao, L., Lai, Y.-K., Huang, Q.-X., and Hu, S.-M. 2013. A data-driven approach to realistic shape morphing. In Computer graphics forum, vol. 32, Wiley Online Library, 449--457.Google ScholarGoogle Scholar
  11. Gill, P. E., Murray, W., and Saunders, M. A. 1997. Snopt: An sqp algorithm for large-scale constrained optimization. SIAM JOURNAL ON OPTIMIZATION 12, 979--1006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-based inverse kinematics. ACM Trans. Graph. 23, 3 (Aug.), 522--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R. W., Cole, F., Meyer, M., DeRose, T., and Gross, M. 2014. Subspace clothing simulation using adaptive bases. ACM Trans. Graph. 33, 4 (July), 105:1--105:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, H., Zhao, L., Yin, K., Qi, Y., Yu, Y., and Tong, X. 2011. Controllable hand deformation from sparse examples with rich details. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '11, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3 (July), 1134--1141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 30, 4, 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 31, 4, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. Computer Graphics Forum (proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing) 31, 5, 1577--1586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jones, B., Popovic, J., McCann, J., Li, W., and Bargteil, A. 2013. Dynamic sprites. In Proceedings of Motion on Games, ACM, New York, NY, USA, MIG '13, 17:39--17:46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jones, B., Thuerey, N., Shinar, T., and Bargteil, A. W. 2016. Example-based plastic deformation of rigid bodies. ACM Trans. on Graphics 35, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Koyama, Y., Takayama, K., Umetani, N., and Igarashi, T. 2012. Real-time example-based elastic deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '12, 19--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Levi, Z., and Gotsman, C. 2015. Smooth rotation enhanced as-rigid-as-possible mesh animation. 264--277.Google ScholarGoogle Scholar
  24. Lewis, J. P., and Anjyo, K.-i. 2010. Direct manipulation blend-shapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Proceedings of the Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '08, 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1--72:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Milliez, A., Wand, M., Cani, M.-P., and Seidel, H.-P. 2013. Mutable elastic models for sculpting structured shapes. In Computer Graphics Forum, vol. 32, Wiley Online Library, 21--30.Google ScholarGoogle Scholar
  29. Nieto, J., and Susn, A. 2013. Cage based deformations: A survey. In Deformation Models, M. Gonzlez Hidalgo, A. Mir Torres, and J. Varona Gmez, Eds., vol. 7 of Lecture Notes in Computational Vision and Biomechanics. Springer Netherlands, 75--99.Google ScholarGoogle Scholar
  30. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. 2012. Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '12, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4 (Aug.), 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6 (Dec.), 164:1--164:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Proceedings of the 3D Data Processing, Visualization, and Transmission, 2Nd International Symposium, IEEE Computer Society, Washington, DC, USA, 3DPVT '04, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sloan, P.-P. J., Rose III, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the 2001 symposium on Interactive 3D graphics, ACM, 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Song, C., Zhang, H., Wang, X., Han, J., and Wang, H. 2014. Fast corotational simulation for example-driven deformation. Computers & Graphics 40, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '07, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH '05, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Twigg, C. D., and Kačić-Alesić, Z. 2010. Point cloud glue: Constraining simulations using the procrustes transform. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '10, 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wang, Y., Jacobson, A., Barbic, J., and Kavan, L. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wareham, R., and Lasenby, J. 2008. Bone glow: An improved method for the assignment of weights for mesh deformation. In AMDO, Springer, F. J. P. Lpez and R. B. Fisher, Eds., vol. 5098 of Lecture Notes in Computer Science, 63--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. In Computer Graphics Forum, vol. 26, Wiley Online Library, 265--274.Google ScholarGoogle Scholar
  43. Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. 2004. Spacetime faces: High resolution capture for modeling and animation. ACM Trans. Graph. 23, 3 (Aug.), 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zhang, W., Zheng, J., and Thalmann, N. M. 2015. Real-Time Subspace Integration for Example-Based Elastic Material. Computer Graphics Forum. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast and reliable example-based mesh IK for stylized deformations

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 6
        November 2016
        1045 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2980179
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 5 December 2016
        Published in tog Volume 35, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader