skip to main content
10.1145/2984511.2984521acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Stretchis: Fabricating Highly Stretchable User Interfaces

Published:16 October 2016Publication History

ABSTRACT

Recent advances in materials science research allow production of highly stretchable sensors and displays. Such technologies, however, are still not accessible to non-expert makers. We present a novel and inexpensive fabrication method for creating Stretchis, highly stretchable user interfaces that combine sensing capabilities and visual output. We use Polydimethylsiloxan (PDMS) as the base material for a Stretchi and show how to embed stretchable touch and proximity sensors and stretchable electroluminescent displays. Stretchis can be ultra-thin (≈ 200μm), flexible, and fully customizable, enabling non-expert makers to add interaction to elastic physical objects, shape-changing surfaces, fabrics, and the human body. We demonstrate the usefulness of our approach with three application examples that range from ubiquitous computing to wearables and on-skin interaction.

Skip Supplemental Material Section

Supplemental Material

uist1820-file3.mp4

mp4

52.6 MB

p697-wessely.mp4

mp4

299.4 MB

References

  1. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., and Park, I. Highly stretchable and sensitive strain sensor based on silver nanowireelastomer nanocomposite. ACS Nano 8, 5 (2014), 5154--5163. Google ScholarGoogle ScholarCross RefCross Ref
  2. Bächer, M., Hepp, B., Pece, F., Kry, P. G., Bickel, B., Thomaszewski, B., and Hilliges, O. Defsense: Computational design of customized deformable input devices. In Proc. CHI '16, ACM, 3806--3816, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Badger, P. http://playground.arduino.cc. Last accessed: March 2016.Google ScholarGoogle Scholar
  4. Cao, Q., and Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Advanced Materials 21, 1 (2009), 29--53. Google ScholarGoogle ScholarCross RefCross Ref
  5. Cossu, M. Silk Screen Basics: A Complete How-to Handbook. Ginko Press, 2012.Google ScholarGoogle Scholar
  6. Dementyev, A., Kao, H.-L. C., and Paradiso, J. A. Sensortape: Modular and programmable 3d-aware dense sensor network on a tape. In Proc. UIST '15, ACM, 649--658, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ginn, B. T., and Steinbock, O. Polymer surface modification using microwave-oven-generated plasma. Langmuir 19, 19 (2003), 8117--8118. Google ScholarGoogle ScholarCross RefCross Ref
  8. Gong, N.-W., Steimle, J., Olberding, S., Hodges, S., Gillian, N. E., Kawahara, Y., and Paradiso, J. A. Printsense: A versatile sensing technique to support multimodal flexible surface interaction. In Proc. CHI '14, ACM, 1407--1410, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Haubert, K., Drier, T., and Beebe, D. Pdms bonding by means of a portable, low-cost corona system. Lab Chip 6 (2006), 1548--1549. Google ScholarGoogle ScholarCross RefCross Ref
  10. Kaltenbrunner, M., Kettlgruber, G., Siket, C., Schwdiauer, R., and Bauer, S. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Advanced Materials 22, 18 (2010), 2065--2067. Google ScholarGoogle ScholarCross RefCross Ref
  11. Kawahara, Y., Hodges, S., Cook, B. S., Zhang, C., and Abowd, G. D. Instant inkjet circuits: Lab-based inkjet printing to support rapid prototyping of ubicomp devices. In Proc. UbiComp '13, ACM, 363--372, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kim, H.-J., Son, C., and Ziaie, B. A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Applied Physics Letters 92, 1 (2008). Google ScholarGoogle ScholarCross RefCross Ref
  13. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., and Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 7230 (02 2009), 706--710.Google ScholarGoogle ScholarCross RefCross Ref
  14. Kitai, A. H. Thin Film Electroluminescence. John Wiley and Sons, Ltd, 2008, 223--248. Google ScholarGoogle ScholarCross RefCross Ref
  15. Lacour, S. P., Wagner, S., Huang, Z., and Suo, Z. Stretchable gold conductors on elastomeric substrates. Applied Physics Letters 82, 15 (2003), 2404--2406. Google ScholarGoogle ScholarCross RefCross Ref
  16. Lahey, B., Girouard, A., Burleson, W., and Vertegaal, R. Paperphone: Understanding the use of bend gestures in mobile devices with flexible electronic paper displays. In Proc. CHI '11, ACM, 1303--1312, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lipomi, D. J., Lee, J. A., Vosgueritchian, M., Tee, B. C.-K., Bolander, J. A., and Bao, Z. Electronic properties of transparent conductive films of pedot:pss on stretchable substrates. Chemistry of Materials 24, 2 (2012), 373--382. Google ScholarGoogle ScholarCross RefCross Ref
  18. Lu, T., Finkenauer, L., Wissman, J., and Majidi, C. Rapid prototyping for soft-matter electronics. Advanced Functional Materials 24, 22 (2014), 3351--3356. Google ScholarGoogle ScholarCross RefCross Ref
  19. Olberding, S., Soto Ortega, S., Hildebrandt, K., and Steimle, J. Foldio: Digital fabrication of interactive and shape-changing objects with foldable printed electronics. In Proc. UIST '15, ACM, 223--232, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Olberding, S., Wessely, M., and Steimle, J. Printscreen: Fabricating highly customizable thin-film touch displays. In Proc. UIST '14, ACM, 281--290, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sato, M., Poupyrev, I., and Harrison, C. Touché: Enhancing touch interaction on humans, screens, liquids, and everyday objects. In Proc. CHI '12, ACM, 483--492, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Savage, V., Zhang, X., and Hartmann, B. Midas: Fabricating custom capacitive touch sensors to prototype interactive objects. In Proc. UIST '12, ACM, 579--588, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., and Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Materials 8, 6 (June 2009), 494--499. Google ScholarGoogle ScholarCross RefCross Ref
  24. Sugiura, Y., Inami, M., and Igarashi, T. A thin stretchable interface for tangential force measurement. In Proc. UIST '12, ACM, 529--536, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Vosgueritchian, M., Lipomi, D. J., and Bao, Z. Highly conductive and transparent pedot:pss films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials 22, 2 (2012), 421--428. Google ScholarGoogle ScholarCross RefCross Ref
  26. Wang, J., Yan, C., Cai, G., Cui, M., Lee-Sie Eh, A., and See Lee, P. Extremely stretchable electroluminescent devices with ionic conductors. Advanced Materials 28, 22 (2016), 4490--4496. Google ScholarGoogle ScholarCross RefCross Ref
  27. Wang, J., Yan, C., Chee, K. J., and Lee, P. S. Highly stretchable and self-deformable alternating current electroluminescent devices. Advanced Materials 27, 18 (2015), 2876--2882. Google ScholarGoogle ScholarCross RefCross Ref
  28. Weigel, M., Lu, T., Bailly, G., Oulasvirta, A., Majidi, C., and Steimle, J. iskin: Flexible, stretchable and visually customizable on-body touch sensors for mobile computing. In Proc. CHI '15, ACM, 2991--3000, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Woo, S.-J., Kong, J.-H., Kim, D.-G., and Kim, J.-M. A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2 (2014), 4415--4422. Google ScholarGoogle ScholarCross RefCross Ref
  30. Xu, D., Tairych, A., and Anderson, I. A. Stretch not flex: programmable rubber keyboard. Smart Materials and Structures 25, 1 (2016), 015012.Google ScholarGoogle ScholarCross RefCross Ref
  31. Yan, C., Kang, W., Wang, J., Cui, M., Wang, X., Foo, C. Y., Chee, K. J., and Lee, P. S. Stretchable and wearable electrochromic devices. ACS Nano 8, 1 (2014), 316--322. Google ScholarGoogle ScholarCross RefCross Ref
  32. Yang, C. H., Chen, B., Zhou, J., Chen, Y. M., and Suo, Z. Electroluminescence of giant stretchability. Advanced Materials 28, 22 (2016), 4480--4484. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Stretchis: Fabricating Highly Stretchable User Interfaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader