skip to main content
10.1145/3038912.3052577acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article
Public Access

DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing

Authors Info & Claims
Published:03 April 2017Publication History

ABSTRACT

Mobile sensing and computing applications usually require time-series inputs from sensors, such as accelerometers, gyroscopes, and magnetometers. Some applications, such as tracking, can use sensed acceleration and rate of rotation to calculate displacement based on physical system models. Other applications, such as activity recognition, extract manually designed features from sensor inputs for classification. Such applications face two challenges. On one hand, on-device sensor measurements are noisy. For many mobile applications, it is hard to find a distribution that exactly describes the noise in practice. Unfortunately, calculating target quantities based on physical system and noise models is only as accurate as the noise assumptions. Similarly, in classification applications, although manually designed features have proven to be effective, it is not always straightforward to find the most robust features to accommodate diverse sensor noise patterns and heterogeneous user behaviors. To this end, we propose DeepSense, a deep learning framework that directly addresses the aforementioned noise and feature customization challenges in a unified manner. DeepSense integrates convolutional and recurrent neural networks to exploit local interactions among similar mobile sensors, merge local interactions of different sensory modalities into global interactions, and extract temporal relationships to model signal dynamics. DeepSense thus provides a general signal estimation and classification framework that accommodates a wide range of applications. We demonstrate the effectiveness of DeepSense using three representative and challenging tasks: car tracking with motion sensors, heterogeneous human activity recognition, and user identification with biometric motion analysis. DeepSense significantly outperforms the state-of-the-art methods for all three tasks. In addition, we show that DeepSense is feasible to implement on smartphones and embedded devices thanks to its moderate energy consumption and low latency.

References

  1. Intel edison compute module. http://www.intel. com/content/dam/support/us/en/documents/ edison/sb/edison-module_HG_331189.pdf .Google ScholarGoogle Scholar
  2. Qualcomm snapdragon 800 processor. https://www.qualcomm.com/products/ snapdragon/processors/800.Google ScholarGoogle Scholar
  3. W. T. Ang, P. K. Khosla, and C. N. Riviere. Nonlinear regression model of a low-g mems accelerometer. IEEE Sensors Journal, 2007.Google ScholarGoogle Scholar
  4. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014.Google ScholarGoogle Scholar
  5. I. G. Y. Bengio and A. Courville. Deep learning. Book in preparation for MIT Press, 2016.Google ScholarGoogle Scholar
  6. S. Bhattacharya and N. D. Lane. From smart to deep: Robust activity recognition on smartwatches using deep learning. In PerCom Workshops, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  7. G. Chandrasekaran, T. Vu, A. Varshavsky, M. Gruteser, R. P. Martin, J. Yang, and Y. Chen. Tracking vehicular speed variations by warping mobile phone signal strengths. In PerCom, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555, 2014.Google ScholarGoogle Scholar
  9. T. Cooijmans, N. Ballas, C. Laurent, and A. Courville. Recurrent batch normalization. arXiv:1603.09025, 2016.Google ScholarGoogle Scholar
  10. G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE TASLP, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  12. D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso. Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput., 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Gadaleta and M. Rossi. Idnet: Smartphone-based gait recognition with convolutional neural networks. arXiv:1606.03238, 2016.Google ScholarGoogle Scholar
  14. K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm: A search space odyssey. arXiv:1503.04069, 2015.Google ScholarGoogle Scholar
  15. N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz. On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution. In ISWC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:1512.03385, 2015.Google ScholarGoogle Scholar
  17. S. Hu, L. Su, S. Li, S. Wang, C. Pan, S. Gu, M. T. Al Amin, H. Liu, S. Nath, et al. Experiences with enav: a low-power vehicular navigation system. In UbiComp, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.Google ScholarGoogle Scholar
  19. L. Kang, B. Qi, D. Janecek, and S. Banerjee. Ecodrive: A mobile sensing and control system for fuel efficient driving. In MobiCom, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh. Wireless sensor networks for healthcare. Proc. IEEE, 2010.Google ScholarGoogle Scholar
  21. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar. Deepx: A software accelerator for low-power deep learning inference on mobile devices. In IPSN, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. D. Lane, P. Georgiev, and L. Qendro. Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In UbiComp, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone sensing. IEEE Commun. Mag., 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. C.-Y. Li, C.-H. Yen, K.-C. Wang, C.-W. You, S.-Y. Lau, C. C.-H. Chen, P. Huang, and H.-H. Chu. Bioscope: an extensible bandage system for facilitating data collection in nursing assessments. In UbiComp, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou. Human sensing using visible light communication. In MobiCom, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong. Redeye: analog convnet image sensor architecture for continuous mobile vision. In ISCA, pages 255--266, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao. Energy-accuracy aware localization for mobile devices. In MobiSys, 2010.Google ScholarGoogle Scholar
  28. G. Milette and A. Stroud. Professional Android sensor programming. John Wiley & Sons, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury. Tapprints: your finger taps have fingerprints. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. F. J. O. Morales and D. Roggen. Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations. In ISWC, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Nath. Ace: exploiting correlation for energy-efficient and continuous context sensing. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Park. Error analysis and stochastic modeling of MEMS-based inertial sensors for land vehicle navigation applications. Library and Archives Canada= Bibliothèque et Archives Canada, 2005.Google ScholarGoogle Scholar
  33. M. Rabbi, M. H. Aung, M. Zhang, and T. Choudhury. Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. In UbiComp, 2015.Google ScholarGoogle Scholar
  34. V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, and F. Kawsar. Towards multimodal deep learning for activity recognition on mobile devices. In UbiComp: Adjunct, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Ren, Y. Chen, M. C. Chuah, and J. Yang. Smartphone based user verification leveraging gait recognition for mobile healthcare systems. In SECON, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  36. O. Rippel, J. Snoek, and R. P. Adams. Spectral representations for convolutional neural networks. In NIPS, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans Sig. Process., 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen. Smart devices are different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Sensys, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. M. Thang, V. Q. Viet, N. D. Thuc, and D. Choi. Gait identification using accelerometer on mobile phone. In ICCAIS, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  41. C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. Friend or foe?: Your wearable devices reveal your personal pin. In AsiaCCS, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F. Chen, J. Li, and B. Firner. Crowd++: unsupervised speaker count with smartphones. In UbiComp, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv:1409.2329, 2014.Google ScholarGoogle Scholar
  44. L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang. Accurate online power estimation and automatic battery behavior based power model generation for smartphones. In CODES+ISSS, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Y. Zhao, S. Li, S. Hu, L. Su, S. Yao, H. Shao, and T. Abdelzaher. Greendrive: A smartphone-based intelligent speed adaptation system with real-time traffic signal prediction. In ICCPS, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y. Zhu, Y. Zhu, B. Y. Zhao, and H. Zheng. Reusing 60ghz radios for mobile radar imaging. In MobiCom, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DeepSense: A Unified Deep Learning Framework for Time-Series Mobile Sensing Data Processing

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader