skip to main content
10.1145/3126908.3126930acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

A framework for scalable biophysics-based image analysis

Published:12 November 2017Publication History

ABSTRACT

We present SIBIA (Scalable Integrated Biophysics-based Image Analysis), a framework for coupling biophysical models with medical image analysis. It provides solvers for an image-driven inverse brain tumor growth model and an image registration problem, the combination of which can eventually help in diagnosis and prognosis of brain tumors. The two main computational kernels of SIBIA are a Fast Fourier Transformation (FFT) implemented in the library AccFFT to discretize differential operators, and a cubic interpolation kernel for semi-Lagrangian based advection. We present efficiency and scalability results for the computational kernels, the inverse tumor solver and image registration on two x86 systems, Lonestar 5 at the Texas Advanced Computing Center and Hazel Hen at the Stuttgart High Performance Computing Center. We showcase results that demonstrate that our solver can be used to solve registration problems of unprecedented scale, 40963 resulting in ∼ 200 billion unknowns---a problem size that is 64X larger than the state-of-the-art. For problem sizes of clinical interest, SIBIA is about 8X faster than the state-of-the-art.

References

  1. E D Angelini, O Clatz, E Mandonnet, E Konukoglu, L Capelle, and H Duffau. 2007. Glioma dynamics and computational models: A review of segmentation, registation, in silico growth algorithms and their clinical applications. Curr Med Imaging Rev 3, 4 (2007), 262--276.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Ashburner and K. J. Friston. 2011. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. NeuroImage 55, 3 (2011), 954--967.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang. 2016. PETSc users manual. Technical Report ANL-95/11 - Revision 3.7. Argonne National Laboratory.Google ScholarGoogle Scholar
  4. V. Barbu and G. Marinoschi. 2016. An optimal control approach to the optical flow problem. Systems & Control Letters 87 (2016), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes. 2013. A survey of MRI-based medical image analysis for brain tumor studies. Physics in medicine and biology 58, 13 (2013), R97.Google ScholarGoogle Scholar
  6. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. 2005. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61, 2 (2005), 139--157. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders. 2003. Large-scale PDE-constrained optimization. Springer.Google ScholarGoogle Scholar
  8. A. Borzì, K. Ito, and K. Kunisch. 2002. Optimal control formulation for determining optical flow. SIAM Journal on Scientific Computing 24, 3 (2002), 818--847. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Borzì and V. Schulz. 2012. Computational optimization of systems governed by partial differential equations. SIAM, Philadelphia, Pennsylvania, US. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. K. Chen and D. A. Lorenz. 2011. Image sequence interpolation using optimal control. Journal of Mathematical Imaging and Vision 41 (2011), 222--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. G. E. Christensen, X. Geng, J. G. Kuhl, J. Bruss, T. J. Grabowski, I. A. Pirwani, M. W. Vannier, J. S. Allen, and H. Damasio. 2006. Introduction to the non-rigid image registration evaluation project. In Proc Biomedical Image Registration, Vol. LNCS 4057. 128--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, and N. Ayache. 2005. Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Transactions on Medical Imaging 24, 10 (2005), 1334--1346.Google ScholarGoogle ScholarCross RefCross Ref
  13. V. Collins. 1998. Gliomas. Cancer Survey, vol. 32, pp. 37--51 (1998).Google ScholarGoogle Scholar
  14. K.D. Costa, J.W. Holmes, and A.D. McCulloch. 2001. Modeling cardiac mechanical properties in three dimensions. Philosophical Transactions of the Royal Society A 359 (2001), 1233--1250.Google ScholarGoogle ScholarCross RefCross Ref
  15. Cotin, S. and Delingette, H. and Ayache, N. 1999. Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions On Visualization And Computer Graphics 5, 1 (1999), 62--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.-K. Yeung, and R. Vuduc. 2012. On the communication complexity of 3D FFTs and its implications for exascale. In Proc ACM/IEEE Conference on Supercomputing. 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. C. Eisentat and H. F. Walker. 1996. Choosing the forcing terms in an inexact Newton method. SIAM Journal on Scientiic Computing 17, 1 (1996), 16--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Falcone and R. Ferretti. 1998. Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35, 3 (1998), 909--940. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ferrant, M. and Nabavi, A. and Macq, B. and Jolesz, F.A. and Kikinis, R. and Warfield, S.K. 2001. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transactions On Medical Imaging 20, 12 (2001), 1384--1397.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Fischer and J. Modersitzki. 2008. Ill-posed medicine --- an introduction to image registration. Inverse Problems 24, 3 (2008), 1--16.Google ScholarGoogle ScholarCross RefCross Ref
  21. D.T. Gering, A. Nabavi, R. Kikinis, N. Hata, L.J. Donnell, and W.E. Grimson. 2001. An integrated visualization system for surgical planning and guidance using image fusion and an open MR. Journal of Magnetic Resonance Imaging 13, 6 (2001), 967--975.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Gholami. 2017. Fast Algorithms for Biophysically-Constrained Inverse Problems in Medical imaging. Ph.D. Dissertation. The University of Texas at Austin.Google ScholarGoogle Scholar
  23. A. Gholami and G. Biros. 2017. AccFFT. (2017). https://github.com/amirgholami/accfftGoogle ScholarGoogle Scholar
  24. A. Gholami, J. Hill, D. Malhotra, and G. Biros. 2016. AccFFT: A library for distributed-memory FFT on CPU and GPU architectures. arXiv e-prints (2016). in review (arXiv preprint: http://arxiv.org/abs/1506.07933);.Google ScholarGoogle Scholar
  25. A. Gholami, A. Mang, and G. Biros. 2016. An inverse problem formulation for parameter estimation of a reaction-diffusion model of low grade gliomas. Journal of Mathematical Biology 72, 1 (2016), 409--433.Google ScholarGoogle ScholarCross RefCross Ref
  26. A. Gooya, K.M. Pohl, M. Bilello, G. Biros, and C. Davatzikos. 2011. Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2011. Lecture Notes in Computer Science, Vol. 6892. Springer Berlin Heidelberg, 532--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Gooya, K. M. Pohl, M. Bilello, L. Cirillo, G. Biros, E. R. Melhem, and C. Davatzikos. 2013. GLISTR: Glioma image segmentation and registration. Medical Imaging, IEEE Transactions on 31, 10 (2013), 1941--1954.Google ScholarGoogle ScholarCross RefCross Ref
  28. A. Grama, A. Gupta, G. Karypis, and V. Kumar. 2003. An Introduction to parallel computing: Design and analysis of algorithms (second ed.). Addison Wesley.Google ScholarGoogle Scholar
  29. Per Christian Hansen. 2010. Discrete inverse problems: Insight and algorithms. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. L. Hart, C. Zach, and M. Niethammer. 2009. An optimal control approach for deformable registration. In Proc IEEE Conference on Computer Vision and Pattern Recognition. 9--16.Google ScholarGoogle Scholar
  31. A. Hawkins-Daarud, R. C. Rockne, A. R. A. Anderson, and K. R. Swanson. 2013. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its imapct on imageable tumor. Front Oncol 3, 66 (2013).Google ScholarGoogle Scholar
  32. J. Hinkle, P. T. Fletcher, B. Wang, B. Salter, and S. Joshi. 2009. 4D MAP image reconstruction incorporating organ motion. In Proc Information Processing in Medical Imaging. 676--687. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. 2009. Optimization with PDE constraints. Springer, Berlin, DE.Google ScholarGoogle Scholar
  34. C.S. Hogea, F. Abraham, G. Biros, and C. Davatzikos. 2006. A Framework for Soft Tissue Simulations with Applications to Modeling Brain Tumor Mass-Effect in 3D Images. In Medical Image Computing and Computer-Assisted Intervention Workshop on Biomechanics. Copenhagen.Google ScholarGoogle Scholar
  35. C. Hogea, C. Davatzikos, and G. Biros. 2008. Brain-tumor interaction biophysical models for medical image registration. SIAM J Imag Sci 30, 6 (2008), 3050--3072. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Ivkovic, C. Beadle, S. Noticewala, S.C. Massey, K.R. Swanson, L.N. Toro, A.R. Bresnick, P. Canoll, and S.S. Rosenfeld. 2012. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Molecular biology of the cell 23, 4 (2012), 533--542.Google ScholarGoogle Scholar
  37. A. Kirsch. 2011. An introduction to the mathematical theory of inverse problems. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. E. Konukoglu, O. Clatz, P. Y. Bondiau, H. Delingette, and N. Ayache. 2010. Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins. Medical Image Analysis 14, 2 (2010), 111--125.Google ScholarGoogle ScholarCross RefCross Ref
  39. E. Konukoglu, O. Clatz, B. H. Menze, M. A. Weber, B. Stieltjes, E. Mandonnet, H. Delingette, and N. Ayache. 2010. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29, 1 (2010), 77--95.Google ScholarGoogle ScholarCross RefCross Ref
  40. K. S. Kutten, N. Charon, M. I. Miller, J. T. Ratnanather, K. Deisseroth, L. Ye, and J. T. Vogelstein. 2016. A diffeomorphic approach to multimodal registration with mutual information: Applications to CLARITY mouse brain images. ArXiv e-prints (2016).Google ScholarGoogle Scholar
  41. E. Lee and M. Gunzburger. 2010. An optimal control formulation of an image registration problem. Journal of Mathematical Imaging and Vision 36, 1 (2010), 69--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. L. Lions. 1971. Optimal control of systems governed by partial differential equations. Springer.Google ScholarGoogle Scholar
  43. X. Ma, H. Gao, B.E. Griffith, C. Berry, and X. Luo. 2013. Image-based fluid-structure interaction model of the human mitral valve. Computers & Fluids 71 (2013), 417--425.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. Mang and G. Biros. 2015. An inexact Newton-Krylov algorithm for constrained diffeomorphic image registration. SIAM Journal on Imaging Sciences 8, 2 (2015), 1030--1069.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. A. Mang and G. Biros. 2016. Constrained H1-regularization schemes for diffeomorphic image registration. SIAM Journal on Imaging Sciences 9, 3 (2016), 1154--1194.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Mang and G. Biros. 2016. A Semi-Lagrangian two-level preconditioned Newton-Krylov solver for constrained diffeomorphic image registration. arXiv e-prints (2016). in review (arXiv preprint: http://arxiv.org/abs/1604.02153).Google ScholarGoogle Scholar
  47. A. Mang, A. Gholami, and G. Biros. 2016. Distributed-memory large-deformation diffeomorphic 3D image registration. In Proc ACM/IEEE Conference on Supercomputing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. A. Mang, A. Toma, T. A. Schuetz, S. Becker, T. Eckey, C. Mohr, D. Petersen, and T. M. Buzug. 2012. Biophysical modeling of brain tumor progression: from unconditionally stable explicit time integration to an inverse problem with parabolic PDE constraints for model calibration. Medical Physics 39, 7 (2012), 4444--4459.Google ScholarGoogle ScholarCross RefCross Ref
  49. J. Markert, V. Devita, S. Rosenberg, and S. Hellman. 2005. Gliobalastoma Multi-forme. Burlington, MA: Jones Bartlett (2005).Google ScholarGoogle Scholar
  50. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, et al. 2015. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging 34, 10 (2015), 1993--2024.Google ScholarGoogle ScholarCross RefCross Ref
  51. B. H. Menze, K. V. Leemput, E. Konukoglu, A. Honkela, M.-A. Weber, N. Ayache, and P. Golland. 2011. A generative approach for image-based modeling of tumor growth. In Proc Information Processing in Medical Imaging, Vol. 22. 735--747. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. J. Modersitzki. 2004. Numerical methods for image registration. Oxford University Press, New York.Google ScholarGoogle Scholar
  53. J. Modersitzki. 2009. FAIR: Flexible algorithms for image registration. SIAM, Philadelphia, Pennsylvania, US. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. T. Munson, J. Sarich, S. Wild, S. Benson, and L. C. McInnes. 2015. TAO 3.6 Users Manual. Argonne National Laboratory, Mathematics and Computer Science Division.Google ScholarGoogle Scholar
  55. J. Nocedal and S. J. Wright. 2006. Numerical Optimization. Springer, New York, New York, US.Google ScholarGoogle Scholar
  56. T. Riklin-Raviv, K. Van Leemput, B.H. Menze, W.M. Wells III, and P. Golland. 2010. Segmentation of image ensembles via latent atlases. Medical image analysis 14, 5 (2010), 654.Google ScholarGoogle Scholar
  57. M. Sermesant, H. Delingette, and N. Ayache. 2006. An Electromechanical Model of the Heart for Image Analysis and Simulation. IEEE Transactions in Medical Imaging 25, 5 (2006), 612--625.Google ScholarGoogle ScholarCross RefCross Ref
  58. M. Sermesant, P. Moireau, O. Camara, J. Sainte-Marie, R. Andriantsimiavona, R. Cimrman, D.L. Hill, D. Chapelle, and R. Razavi. 2006. Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties. Medical Image Analysis 10, 4 (2006), 642--656.Google ScholarGoogle ScholarCross RefCross Ref
  59. A. Sotiras, C. Davatzikos, and N. Paragios. 2013. Deformable medical image registration: A survey. Medical Imaging, IEEE Transactions on 32, 7 (2013), 1153--1190.Google ScholarGoogle ScholarCross RefCross Ref
  60. K. R. Swanson, E. C. Alvord, and J. D. Murray. 2000. A quantitative model for differential motility of gliomas in grey and white matter. Cell Proliferation 33, 5 (2000), 317--330.Google ScholarGoogle ScholarCross RefCross Ref
  61. K. R. Swanson, H. L. Harpold, D. L. Peacock, R. Rockne, C. Pennington, L. Kilbride, R. Grant, J. M. Wardlaw, and E. C. Alvord. 2008. Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: A proof of principle. Clin Oncol (R Coll Radiol) 20, 4 (2008), 301--308.Google ScholarGoogle ScholarCross RefCross Ref
  62. Raju Tomer, Li Ye, Brian Hsueh, and Karl Deisseroth. 2014. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature protocols 9, 7 (2014), 1682--1697.Google ScholarGoogle Scholar
  63. Northwestern University and Argonne National Laboratory. 2017. PnetCDF: https://trac.mcs.anl.gov/projects/parallel-netcdf. (2017).Google ScholarGoogle Scholar
  64. F.-X. Vialard, L. Risser, D. Rueckert, and C. J. Cotter. 2012. Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision 97 (2012), 229--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Warfield, S.K. and Talos, F. and Kemper, C. and O'Donnell, L. and Westin, C.F. and Wells W.M. and Black, P. Mc L. and Jolesz, F.A. and Kikinis, R. 2003. Capturing brain deformation (Surgery Simulation and Soft Tissue Modeling. International Symposium, IS4TM 2003. Proceedings (Lecture Notes in Comput. Sci. Vol.2673)). Springer-Verlag, Juan-Les-Pins, France, 203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. L. Weizman, L. Sira, L. Joskowicz, S. Constantini, R. Precel, B. Shortly, and D. Bashat. 2012. Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med. Image Anal., vol. 16, pp. 177--188 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  67. K.C.L. Wong, L. Wang, H. Zhang, H. Liu, and P. Shi. 2007. Integrating Functional and Structural Images for Simultaneous Cardiac Segmentation and Deformation Recovery. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2007 (LNCS), Nicholas Ayache, Sébastien Ourselin, and Anthony Maeder (Eds.), Vol. 4791. Springer, 270--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. T.E. Yankeelov, N. Atuegwu, D. Hormuth, J.A. Weis, S.L. Barnes, M.I. Miga, E.C. Rericha, and V. Quaranta. 2013. Clinically relevant modeling of tumor growth and treatment response. Science translational medicine 5, 187 (2013), 187ps9--187ps9.Google ScholarGoogle Scholar
  69. E. I. Zacharaki, C. S. Hogea, D. Shen, G. Biros, and C. Davatzikos. 2009. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46, 3 (2009), 762--774.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A framework for scalable biophysics-based image analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SC '17: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
        November 2017
        801 pages
        ISBN:9781450351140
        DOI:10.1145/3126908
        • General Chair:
        • Bernd Mohr,
        • Program Chair:
        • Padma Raghavan

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 November 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SC '17 Paper Acceptance Rate61of327submissions,19%Overall Acceptance Rate1,516of6,373submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader