skip to main content
10.1145/3152434.3152441acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

Learning to Route

Published:30 November 2017Publication History

ABSTRACT

Recently, much attention has been devoted to the question of whether/when traditional network protocol design, which relies on the application of algorithmic insights by human experts, can be replaced by a data-driven (i.e., machine learning) approach. We explore this question in the context of the arguably most fundamental networking task: routing. Can ideas and techniques from machine learning (ML) be leveraged to automatically generate "good" routing configurations? We focus on the classical setting of intradomain traffic engineering. We observe that this context poses significant challenges for data-driven protocol design. Our preliminary results regarding the power of data-driven routing suggest that applying ML (specifically, deep reinforcement learning) to this context yields high performance and is a promising direction for further research. We outline a research agenda for ML-guided routing.

Skip Supplemental Material Section

Supplemental Material

valadarsky.mp4

mp4

736.8 MB

References

  1. DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. https://goo.gl/QTdU2T.Google ScholarGoogle Scholar
  2. IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html.Google ScholarGoogle Scholar
  3. M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In NSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). ACM SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Allalouf and Y. Shavitt. Maximum flow routing with weighted max-min fairness. In Quality of Service in the Emerging Networking Panorama.Google ScholarGoogle Scholar
  6. D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial time. STOC, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv, 2014.Google ScholarGoogle Scholar
  9. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Chiesa, G. Rétvári, and M. Schapira. Lying your way to better traffic engineering. CoNEXT, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. W. S. Chow and C. T. Leung. Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proceedings - Generation, Transmission and Distribution, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting congestion control for consistent high performance. NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. ICML, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv., 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional ip routing protocols. Comm. Mag., 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. B. Fortz and M. Thorup. Increasing internet capacity using local search. Computational Optimization and Applications, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Fortz and M. Thorup. Optimizing ospf/is-is weights in a changing world. IEEE J.Sel. A. Commun., 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Ghodbadi, R. Mahajan, A. Phanishayee, H. Rastegarfar, P.-A. Blanche, M. Glick, D. Kilper, J. Kulkarni, G. Ranade, and N. Devanur. ProjecToR: Agile Reconfigurable Datacenter Interconnect. SIGCOMM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting data center networks with multi-gigabit wireless links. SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center fabric using free-space optics. SIGCOMM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in classification. CoRR, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  22. W. S. Jewell. Multi-commodity Network Solutions. 1966.Google ScholarGoogle Scholar
  23. J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Unleashing the potential of data-driven networking. COMSNETS, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: Responsive yet stable traffic engineering. 2005.Google ScholarGoogle Scholar
  25. S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla. Augmenting data center networks with multi-gigabit wireless links. SIGCOMM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Communications, 2011.Google ScholarGoogle Scholar
  27. J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Kumar, Y. Yuan, C. Yu, N. Foster, R. D. Kleinberg, and R. Soulé. Kulfi: Robust traffic engineering using semi-oblivious routing. CoRR, 2016.Google ScholarGoogle Scholar
  30. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Majer, C. Bobda, A. Ahmadinia, and J. Teich. Packet routing in dynamically changing networks on chip. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 3 - Volume 04, IPDPS '05, pages 154.2--, Washington, DC, USA, 2005. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep reinforcement learning. HotNets, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive bitrate streaming with pensive. SIGCOMM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix estimation: Existing techniques and new directions. 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. N. Michael and A. Tang. Halo: Hop-by-hop adaptive link-state optimal routing. IEEE/ACM Transactions on Networking, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. ICML, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR, 2013.Google ScholarGoogle Scholar
  38. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 2015.Google ScholarGoogle Scholar
  39. M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. The MIT Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and Y. Zhang. Experience in measuring backbone traffic variability: Models, metrics, measurements and meaning. IMW, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. ICML, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization Algorithms. ArXiv e-prints, 2017.Google ScholarGoogle Scholar
  43. F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. ACM, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature, 2016.Google ScholarGoogle Scholar
  45. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press Cambridge, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. H. Wang and B. Li. Lube: Mitigating bottlenecks in wide area data analytics. HotCloud, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 1992.Google ScholarGoogle Scholar
  48. K. Winstein and H. Balakrishnan. Tcp ex machina: Computer-generated congestion control. SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Y. Wu, E. Mansimov, S. Liao, R. B. Grosse, and J. Ba. Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation. ArXiv e-prints, 2017.Google ScholarGoogle Scholar
  50. D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-hop forwarding can achieve optimal traffic engineering. INFOCOM, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  51. X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for data centers. SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Learning to Route
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        HotNets '17: Proceedings of the 16th ACM Workshop on Hot Topics in Networks
        November 2017
        206 pages
        ISBN:9781450355698
        DOI:10.1145/3152434

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 November 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        HotNets '17 Paper Acceptance Rate28of124submissions,23%Overall Acceptance Rate110of460submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader