skip to main content
research-article

Kernels for (Connected) Dominating Set on Graphs with Excluded Topological Minors

Authors Info & Claims
Published:03 January 2018Publication History
Skip Abstract Section

Abstract

We give the first linear kernels for the Dominating Set and Connected Dominating Set problems on graphs excluding a fixed graph H as a topological minor. In other words, we prove the existence of polynomial time algorithms that, for a given H-topological-minor-free  graph G and a positive integer k, output an H-topological-minor-free  graph G on O(k) vertices such that G has a (connected) dominating set of size k if and only if G has one.

Our results extend the known classes of graphs on which the Dominating Set and Connected Dominating Set problems admit linear kernels. Prior to our work, it was known that these problems admit linear kernels on graphs excluding a fixed apex graph H as a minor. Moreover, for Dominating Set, a kernel of size kc(H), where c(H) is a constant depending on the size of H, follows from a more general result on the kernelization of Dominating Set on graphs of bounded degeneracy. Alon and Gutner explicitly asked whether one can obtain a linear kernel for Dominating Set on H-minor-free  graphs. We answer this question in the affirmative and in fact prove a more general result. For Connected Dominating Set no polynomial kernel even on H-minor-free  graphs was known prior to our work. On the negative side, it is known that Connected Dominating Set on 2-degenerated graphs does not admit a polynomial kernel unless coNP ⊆ NP/poly.

Our kernelization algorithm is based on a non-trivial combination of the following ingredients

• The structural theorem of Grohe and Marx [STOC 2012] for graphs excluding a fixed graph H as a topological minor;

• A novel notion of protrusions, different than the one defined in [FOCS 2009];

• Our results are based on a generic reduction rule that produces an equivalent instance (in case the input graph is H-minor-free) of the problem, with treewidth O(√ k). The application of this rule in a divide-and-conquer fashion, together with the new notion of protrusions, gives us the linear kernels.

A protrusion in a graph [FOCS 2009] is a subgraph of constant treewidth which is separated from the rest of the graph by at most a constant number of vertices. In our variant of protrusions, instead of stipulating that the subgraph be of constant treewidth, we ask that it contains a constant number of vertices from a solution. We believe that this new take on protrusions would be useful for other graph problems and in different algorithmic settings.

References

  1. Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2017. Irrelevant vertices for the planar disjoint paths problem. J. Comb. Theor. Ser. B 122 (2017), 815--843.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier. 2002. Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 4 (2002), 461--493.Google ScholarGoogle ScholarCross RefCross Ref
  3. Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. 2004. Polynomial-time data reduction for dominating sets. J. ACM 51 (2004), 363--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Noga Alon and Shai Gutner. 2008. Kernels for the Dominating Set Problem on Graphs with an Excluded Minor. Technical Report TR08-066. ECCC.Google ScholarGoogle Scholar
  5. Noga Alon and Shai Gutner. 2009. Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54, 4 (2009), 544--556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Noga Alon, Paul Seymour, and Robin Thomas. 1990. A separator theorem for nonplanar graphs. J. Am. Math. Soc. 3, 4 (1990), 801--808.Google ScholarGoogle ScholarCross RefCross Ref
  7. Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. 1993. An algebraic theory of graph reduction. J. ACM 40 (1993), 1134--1164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2007. Fourier meets Möbious: Fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC’07). ACM Press, 67--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hans L. Bodlaender. 1998. A partial -arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209, 1-2 (1998), 1--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2015. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243 (2015), 86--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. 2009. On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 8 (2009), 423--434. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. 2016. (Meta) kernelization. J. ACM 63, 5 (2016), 44:1--44:69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hans L. Bodlaender and Torben Hagerup. 1998. Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput. 27 (1998), 1725--1746. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. 2001. Reduction algorithms for graphs of small treewidth. Inf. Comput. 167 (2001), 86--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jianer Chen, Henning Fernau, Iyad A. Kanj, and Ge Xia. 2007. Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37 (2007), 1077--1106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. 2017. Tight kernel bounds for problems on graphs with small degeneracy. ACM Trans. Algorithms 13, 3 (2017), 43:1--43:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. 2012. Kernelization hardness of connectivity problems in d-degenerate graphs. Discr. Appl. Math. 160, 15 (2012), 2131--2141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Babette de Fluiter. 1997. Algorithms for Graphs of Small Treewidth. Ph.D. Dissertation. Utrecht University.Google ScholarGoogle Scholar
  19. Holger Dell and Dieter van Melkebeek. 2014. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61, 4 (2014), 23:1--23:27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans. Algor. 1, 1 (2005), 33--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. 2005. Subexponential parameterized algorithms on bounded-genus graphs and -minor-free graphs. J. ACM 52, 6 (2005), 866--893. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Erik D. Demaine and Mohammad Taghi Hajiaghayi. 2005. Bidimensionality: New connections between FPT algorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05). ACM-SIAM, New York, NY, 590--601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Erik D. Demaine and Mohammad Taghi Hajiaghayi. 2007. The bidimensionality theory and its algorithmic applications. Comput. J. 51, 3 (2007), 332--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. 2009. Approximation algorithms via structural results for apex-minor-free graphs. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP’09), Lecture Notes in Comput. Sci., Vol. 5555. Springer, 316--327. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Reinhard Diestel. 2012. Graph Theory (4th ed). Graduate Texts in Mathematics, Vol. 173. Springer.Google ScholarGoogle Scholar
  26. Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. 2013. Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. Inf. Comput. 233 (2013), 60--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rodney G. Downey and Michael R. Fellows. 1998. Parameterized Complexity. Springer.Google ScholarGoogle Scholar
  28. Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach. 2011. Spanners in sparse graphs. J. Comput. Syst. Sci. 77, 6 (2011), 1108--1119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil, Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. 2016. Kernelization and sparseness: The case of dominating set. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16), Vol. 47. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 31:1--31:14.Google ScholarGoogle Scholar
  30. Andrew Drucker. 2012. New limits to classical and quantum instance compression. In Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS’12). IEEE, 609--618. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P. Duchet and H. Meyniel. 1982. On Hadwiger’s number and the stability number. In Graph Theory (Cambridge, 1981). North-Holland Math. Stud., Vol. 62. North-Holland, Amsterdam, 71--73.Google ScholarGoogle Scholar
  32. Zdenek Dvorak. 2012. A stronger structure theorem for excluded topological minors. CoRR abs/1209.0129 (2012).Google ScholarGoogle Scholar
  33. Zdenek Dvorak. 2013. Constant-factor approximation of the domination number in sparse graphs. Eur. J. Comb. 34, 5 (2013), 833--840. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Uriel Feige, Mohammad Taghi Hajiaghayi, and James R. Lee. 2008. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38, 2 (2008), 629--657. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Michael R. Fellows and Michael A. Langston. 1989. An analogue of the myhill-nerode theorem and its use in computing finite-basis characterizations (extended abstract). In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS’89). IEEE, 520--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. 2011. Contraction obstructions for treewidth. J. Comb. Theor. Ser. B 101, 5 (2011), 302--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. 2016. Hitting forbidden minors: Approximation and kernelization. SIAM J. Discr. Math. 30, 1 (2016), 383--410.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. 2010. Bidimensionality and EPTAS. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’11). SIAM, 748--759. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality and geometric graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). SIAM, 1563--1575. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. 2010. Bidimensionality and kernels. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). ACM-SIAM, 503--510. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. 2010. Linear kernels for (connected) dominating set on H-minor-free graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). ACM-SIAM, 82--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2013. Linear kernels for (connected) dominating set on graphs with excluded topological subgraphs. In Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS’13), Vol. 20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 92--103.Google ScholarGoogle Scholar
  44. Fedor V. Fomin and Dimitrios M. Thilikos. 2006. Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput. 36 (2006), 281--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Petr A. Golovach and Yngve Villanger. 2008. Parameterized complexity for domination problems on degenerate graphs. In Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in Computer Scienc (WG’08). Lecture Notes in Comput. Sci., Vol. 5344. Springer, Berlin, 195--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Martin Grohe. 2003. Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23 (2003), 613--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Martin Grohe and Dániel Marx. 2015. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput. 44, 1 (2015), 114--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Shai Gutner. 2009. Polynomial kernels and faster algorithms for the dominating set problem on graphs with an excluded minor. In Proceedings of the 4th Workshop on Parameterized and Exact Computation (IWPEC’09), Lecture Notes in Computer Science. Springer, 246--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Teresa W. Haynes, Stephen T. Hedetniemi, and Peter J. Slater. 1998. Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York, NY.Google ScholarGoogle Scholar
  50. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity?J. Comput. Syst. Sci. 63, 4 (2001), 512--530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Ken-ichi Kawarabayashi and Yusuke Kobayashi. 2008. The induced disjoint path problem. In Proceedings of the 13th Conference on Integer Programming and Combinatorial Optimization (IPCO’08). Lecture Notes in Computer Science, Vol. 5035. Springer, Berlin, 47--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ken-ichi Kawarabayashi and Bruce Reed. 2010. Odd cycle packing. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10). ACM, New York, NY, 695--704. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi Sau, and Somnath Sikdar. 2016. Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algor. 12, 2 (2016), 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Yusuke Kobayashi and Ken-ichi Kawarabayashi. 2009. Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09). ACM-SIAM, 1146--1155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Rolf Niedermeier. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, Vol. 31. Oxford University Press, Oxford.Google ScholarGoogle Scholar
  56. Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. 2012. Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algor. 9, 1 (2012), 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Neil Robertson and P. D. Seymour. 1995. Graph minors. XIII. The disjoint paths problem. J. Comb. Theor. Ser. B 63, 1 (1995), 65--110. JCBTB Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Neil Robertson and P. D. Seymour. 2003. Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theor. Ser. B 89, 1 (2003), 43--76. JCBTB Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. 2009. Dynamic programming on tree decompositions using generalised fast subset convolution. In Proceedings of the 17th Annual European Symposium on Algorithms (ESA’09), Lecture Notes in Computer Science, Vol. 5757. Springer, 566--577.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Kernels for (Connected) Dominating Set on Graphs with Excluded Topological Minors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Algorithms
      ACM Transactions on Algorithms  Volume 14, Issue 1
      January 2018
      269 pages
      ISSN:1549-6325
      EISSN:1549-6333
      DOI:10.1145/3171590
      Issue’s Table of Contents

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 January 2018
      • Accepted: 1 October 2017
      • Revised: 1 July 2017
      • Received: 1 October 2016
      Published in talg Volume 14, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader