skip to main content
10.1145/3183713.3196913acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on Road Networks

Authors Info & Claims
Published:27 May 2018Publication History

ABSTRACT

Computing the shortest distance between two vertices is a fundamental problem in road networks. Since a direct search using the Dijkstra's algorithm results in a large search space, researchers resort to indexing-based approaches. State-of-the-art indexing-based solutions can be categorized into hierarchy-based solutions and hopbased solutions. However, the hierarchy-based solutions require a large search space for long-distance queries while the hop-based solutions result in a high computational waste for short-distance queries. To overcome the drawbacks of both solutions, in this paper, we propose a novel hierarchical 2-hop index (H2H-Index) which assigns a label for each vertex and at the same time preserves a hierarchy among all vertices. With the H2H-Index, we design an efficient query processing algorithm with performance guarantees by visiting part of the labels for the source and destination based on the vertex hierarchy. We also propose an algorithm to construct the H2H-Index based on distance preserved graphs. The algorithm is further optimized by computing the labels based on the partially computed labels of other vertices. We conducted extensive performance studies using large real road networks including the whole USA road network. The experimental results demonstrate that our approach can achieve a speedup of an order of magnitude in query processing compared to the state-of-the-art while consuming comparable indexing time and index size.

References

  1. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based labeling algorithm for shortest paths in road networks. In Proc. of ISEA'11, pages 230--241, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub labelings for shortest paths. In Proc. of ESA'12, pages 24--35, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and Y. Kawata. Fast shortest-path distance queries on road networks by pruned highway labeling. In Proc. of ALENEX'14, pages 147--154, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In Proc. of SIGMOD'13, pages 349--360, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Akiba, C. Sommer, and K.-i. Kawarabayashi. Shortest-path queries for complex networks: Exploiting low tree-width outside the core. In Proc. of EDBT'12, pages 144--155, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277--284, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277--284, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Arz, D. Luxen, and P. Sanders. Transit node routing reconsidered. In Proc. of SEA'13, pages 55--66, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck. Route planning in transportation networks. In Algorithm Engineering - Selected Results and Surveys, pages 19--80. 2016.Google ScholarGoogle ScholarCross RefCross Ref
  10. H. Bast, S. Funke, and D. Matijević. Transit: ultrafast shortest-path queries with linear-time preprocessing. In 9th DIMACS Implementation Challenge-Shortest Path, 2006.Google ScholarGoogle Scholar
  11. M. A. Bender and M. Farach-Colton. The lca problem revisited. In Proc. of LASTI'00, pages 88--94, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1--2):1--21, 1993.Google ScholarGoogle Scholar
  13. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305--1317, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. H. L. Bodlaender. Treewidth: Characterizations, applications, and computations. In Graph-Theoretic Concepts in Computer Science, pages 1--14, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance to destination in undirected world. The VLDB Journal, 21(6):869--888, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In Proc. of WEA'08, pages 319--333, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. V. Goldberg and C. Harrelson. Computing the shortest path: A search meets graph theory. In Proc. of SODA'05, pages 156--165, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Halin. S-functions for graphs. Journal of Geometry, 8:171--186, 1976.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Hassin. Approximation schemes for the restricted shortest path problem. Math. Oper. Res., 17(1):36--42, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop doubling label indexing for pointto- point distance querying on scale-free networks. PVLDB, 7(12):1203--1214, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. Jung and S. Pramanik. An efficient path computation model for hierarchically structured topographical road maps. IEEE Trans. Knowl. Data Eng., 14(5):1029--1046, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational experiments. Electronic Notes in Discrete Mathematics, 8:54--57, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Maehara, T. Akiba, Y. Iwata, and K. Kawarabayashi. Computing personalized pagerank quickly by exploiting graph structures. PVLDB, 7(12):1023--1034, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proc. of SODA'12, pages 209--222, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. N. Rice and V. J. Tsotras. Graph indexing of road networks for shortest path queries with label restrictions. PVLDB, 4(2):69--80, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. N. Robertson and P. D. Seymour. Graph minors iii: Planar tree-width. Journal of Combinatorial Theory, Series B, 36(1):49--64, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network distance browsing in spatial databases. In Proc. of SIGMOD'08, pages 43--54, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest path queries. In Proc. of ESA'05, pages 568--579, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Sankaranarayanan and H. Samet. Query processing using distance oracles for spatial networks. IEEE Trans. Knowl. Data Eng., 22(8):1158--1175, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial networks. PVLDB, 2(1):1210--1221, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou. Efficient route planning on public transportation networks: A labelling approach. In Proc. of SIGMOD'15, pages 967--982, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Wei. Tedi: efficient shortest path query answering on graphs. In Proc. of SIGMOD'10, pages 99--110. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. Reachability and time-based path queries in temporal graphs. In Proc. of ICDE'16, pages 145--156, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  34. L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and distance queries on road networks: An experimental evaluation. PVLDB, 5(5):406-- 417, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Xiang. Answering exact distance queries on real-world graphs with bounded performance guarantees. The VLDB Journal, 23(5):677--695, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and distance queries on road networks: Towards bridging theory and practice. In Proc. of SIGMOD'13, pages 857--868, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on Road Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
        May 2018
        1874 pages
        ISBN:9781450347037
        DOI:10.1145/3183713

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 May 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        SIGMOD '18 Paper Acceptance Rate90of461submissions,20%Overall Acceptance Rate785of4,003submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader