skip to main content
10.1145/3209108.3209114acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

What's in a game?: A theory of game models

Authors Info & Claims
Published:09 July 2018Publication History

ABSTRACT

Game semantics is a rich and successful class of denotational models for programming languages. Most game models feature a rather intuitive setup, yet surprisingly difficult proofs of such basic results as associativity of composition of strategies. We seek to unify these models into a basic abstract framework for game semantics, game settings. Our main contribution is the generic construction, for any game setting, of a category of games and strategies. Furthermore, we extend the framework to deal with innocence, and prove that innocent strategies form a subcategory. We finally show that our constructions cover many concrete cases, mainly among the early models [5, 23] and the recent, sheaf-based ones [40].

References

  1. IEEE 1997. Proc. 12th Symposium on Logic in Computer Science IEEE.Google ScholarGoogle Scholar
  2. IEEE 2015. Proc. 30th Symposium on Logic in Computer Science IEEE.Google ScholarGoogle Scholar
  3. S. Abramsky. 2003. Sequentiality vs. Concurrency In Games And Logic. Mathematical Structures in Computer Science 13, 4 (2003), 531--565. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Abramsky, K. Honda, and G. McCusker. 1998. A Fully Abstract Game Semantics for General References. In Proc. 13th Symposium on Logic in Computer Science IEEE, 334--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Abramsky, R. Jagadeesan, and P. Malacaria. 2000. Full Abstraction for PCF. Information and Computation 163, 2 (2000), 409--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P. Baillot, V. Danos, T. Ehrhard, and L. Regnier. 1997. Believe it or not, AJM's Games Model is a Model of Classical Linear Logic, See {1}, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Blass. 1972. Degrees of indeterminacy in games. Fundamenta Mathematica LXXVII (1972), 151--162.Google ScholarGoogle Scholar
  8. A. Blass. 1992. A game semantics for linear logic. Annals of Pure and Applied Logic 56, 1-3 (1992), 183--220.Google ScholarGoogle ScholarCross RefCross Ref
  9. N.J. Bowler. 2011. A unified approach to the construction of categories of games. Ph.D. Dissertation. University of Cambridge.Google ScholarGoogle Scholar
  10. S. Castellan, P. Clairambault, and G. Winskel. 2015. The parallel intensionally fully abstract games model of PCF, See {2}.Google ScholarGoogle Scholar
  11. C. Eberhart and T. Hirschowitz. 2017. Game semantics as a singular functor, and definability as geometric realisation. (2017). Preprint hal-01527171.Google ScholarGoogle Scholar
  12. C. Eberhart and T. Hirschowitz. 2017. What's in a game? A theory of game models. (2017). Preprint hal-01634162.Google ScholarGoogle Scholar
  13. M. P. Fiore. 2012. Discrete Generalised Polynomial Functors - (Extended Abstract). In Proc. 39th International Colloquium on Automata, Languages and Programming (LNCS), Vol. 7392. Springer, 214--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. R. H. G. Garner and T. Hirschowitz. 2018. Shapely monads and analytic functors. Journal of Logic and Computation 28, 1 (2018), 33--83.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Guitart. 1980. Relations et carrés exacts. Annales des Sciences Mathématiques du Québec 4, 2 (1980), 103--125.Google ScholarGoogle Scholar
  16. R. Harmer. 1999. Games and Full Abstraction for Nondeterministic Languages. Ph.D. Dissertation. Imperial College, University of London.Google ScholarGoogle Scholar
  17. R. Harmer, J. M. E. Hyland, and P.-A. Melliès. 2007. Categorical Combinatorics for Innocent Strategies. In Proc. 22nd Symposium on Logic in Computer Science IEEE, 379--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. Harmer and G. McCusker. 1999. A Fully Abstract Game Semantics for Finite Nondeterminism. In LICS. IEEE, 422--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Hatat. 2013. Graphical games and proof theory. Ph.D. Dissertation. Université de Grenoble.Google ScholarGoogle Scholar
  20. M. Hirschowitz. 2004. Jeux abstraits et composition catégorique. Ph.D. Dissertation. Université Paris-Diderot - Paris VII.Google ScholarGoogle Scholar
  21. M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz. 2007. A theory for game theories. In Proc. 27th Foundations of Software Technology and Theoretical Computer Science (LNCS), Vol. 4855. Springer, 192--203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Hirschowitz. 2014. Full abstraction for fair testing in CCS (expanded version). Logical Methods in Computer Science 10, 4 (2014).Google ScholarGoogle Scholar
  23. J. M. E. Hyland and C.-H. L. Ong. 2000. On Full Abstraction for PCF: I, II, and III. Information and Computation 163, 2 (2000), 285--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Joyal. 1977. Remarques sur la théorie des jeux à deux personnes. Gazette des Sciences Mathématiques du Québec 1, 4 (1977), 46--52.Google ScholarGoogle Scholar
  25. A. Joyal. 1986. Foncteurs analytiques et espèces de structure. In Combinatoire énumérative (Montréal 1985) (Lecture Notes in Mathematics), Vol. 1234. Springer, 126--159.Google ScholarGoogle Scholar
  26. J. Laird. 1997. Full Abstraction for Functional Languages with Control, See {1}, 58--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Number 5 in Graduate Texts in Mathematics. Springer.Google ScholarGoogle Scholar
  28. G. McCusker. 1996. Games and Full Abstraction for a Functional Metalanguage with Recursive Types. Ph.D. Dissertation. Imperial College, University of London.Google ScholarGoogle Scholar
  29. G. McCusker. 2000. Games and Full Abstraction for FPC. Information and Computation 160, 1-2 (2000), 1--61.Google ScholarGoogle ScholarCross RefCross Ref
  30. G. McCusker, J. Power, and C. Wingfield. 2012. A Graphical Foundation for Schedules. In Proc. 28th Conf. on the Math. Found. of Prog. Semantics (Electronic Notes in Theoretical Computer Science), Vol. 286. Elsevier, 273--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. P.-A. Melliès. 2004. Asynchronous games 2: the true concurrency of innocence. In Proc. 15th International Conference on Concurrency Theory (LNCS), Vol. 3170. Springer, 448--465.Google ScholarGoogle ScholarCross RefCross Ref
  32. P.-A. Melliès. 2005. Asynchronous Games 4: A Fully Complete Model of Propositional Linear Logic. In Proc. 20th Symposium on Logic in Computer Science IEEE, 386--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P.-A. Melliès. 2012. Game Semantics in String Diagrams. In Proc. 27th Symposium on Logic in Computer Science IEEE, 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P.-A. Melliès and S. Mimram. 2007. Asynchronous Games: Innocence Without Alternation. In Proc. 19th International Conference on Concurrency Theory (LNCS), Vol. 4703. Springer, 395--411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. S. Murawski and N. Tzevelekos. 2016. Nominal Game Semantics. Foundations and Trends in Programming Languages 2, 4 (2016), 191--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Nickau. 1994. Hereditarily Sequential Functionals. In Proc. Logical Foundations of Computer Science (LNCS), Vol. 813. Springer, 253--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. Rideau and G. Winskel. 2011. Concurrent Strategies. In Proc. 26th Symposium on Logic in Computer Science IEEE, 409--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. E. Riehl. 2014. Categorical Homotopy Theory. Number 24 in New Mathematical Monographs. Cambridge University Press.Google ScholarGoogle Scholar
  39. T. Tsukada and C.-H. L. Ong. 2014. Innocent Strategies are Sheaves over Plays---Deterministic, Non-deterministic and Probabilistic Innocence. (2014). arXiv:cs/1409.2764Google ScholarGoogle Scholar
  40. T. Tsukada and C.-H. L. Ong. 2015. Nondeterminism in Game Semantics via Sheaves, See {2}.Google ScholarGoogle Scholar
  41. M. Weber. 2004. Generic morphisms, parametric representations and weakly cartesian monads. Theory and Applications of Categories 13 (2004), 191--234.Google ScholarGoogle Scholar
  42. M. Weber. 2007. Familial 2-functors and parametric right adjoints. Theory and Applications of Categories 18, 22 (2007), 665--732.Google ScholarGoogle Scholar

Index Terms

  1. What's in a game?: A theory of game models

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        LICS '18: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science
        July 2018
        960 pages
        ISBN:9781450355834
        DOI:10.1145/3209108

        Copyright © 2018 ACM

        Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 July 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate143of386submissions,37%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader