skip to main content
10.1145/3219819.3219831acmotherconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

TATC: Predicting Alzheimer's Disease with Actigraphy Data

Authors Info & Claims
Published:19 July 2018Publication History

ABSTRACT

With the increase of elderly population, Alzheimer's Disease (AD), as the most common cause of dementia among the elderly, is affecting more and more senior people. It is crucial for a patient to receive accurate and timely diagnosis of AD. Current diagnosis relies on doctors' experience and clinical test, which, unfortunately, may not be performed until noticeable AD symptoms are developed. In this work, we present our novel solution named time-aware TICC and CNN (TATC), for predicting AD from actigraphy data. TATC is a multivariate time series classification method using a neural attention-based deep learning approach. It not only performs accurate prediction of AD risk, but also generates meaningful interpretation of daily behavior pattern of subjects. TATC provides an automatic, low-cost solution for continuously monitoring the change of physical activity of subjects in daily living environment. We believe the future deployment of TATC can benefit both doctors and patients in early detection of potential AD risk.

Skip Supplemental Material Section

Supplemental Material

li_predicting_alzheimers_disease.mp4

mp4

410.1 MB

References

  1. A. Alberdi, A. Aztiria, and A. Basarab. 2016. On the early diagnosis of Alzheimer's Disease from multimodal signals: A survey. Artificial Intelligence in Medicine Vol. 71 (2016), 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).Google ScholarGoogle Scholar
  3. M. G. Baydogan and G. Runger. 2015. Learning a symbolic representation for multivariate time series classification. Data Mining and Knowledge Discovery Vol. 29, 2 (2015), 400--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. J. Berndt and J. Clifford. 1994. Using dynamic time warping to find patterns in time series KDD Workshop. 359--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. A. Cadzow, B. Baseghi, and T. Hsu. 1983. Singular-value decomposition approach to time series modelling. IEE Proceedings F (Communications, Radar and Signal Processing) Vol. 130, 3 (1983), 202--210.Google ScholarGoogle ScholarCross RefCross Ref
  6. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research Vol. 16 (2002), 321--357. Google ScholarGoogle ScholarCross RefCross Ref
  7. E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart. 2016. RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. In NIPS. 3504--3512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. L. Choi, Z. Liu, C. E. Matthews, and M. S. Buchowski. 2011. Validation of accelerometer wear and nonwear time classification algorithm. Medicine and Science in Sports and Exercise Vol. 43, 2 (2011), 357--364.Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling NIPS 2014 Deep Learning and Representation Learning Workshop.Google ScholarGoogle Scholar
  10. A. N. Coogan, B. Schutová, S. Husung, K. Furczyk, B. T. Baune, P. Kropp, F. Häßler, and J. Thome. 2013. The circadian system in Alzheimer's Disease: Disturbances, mechanisms, and opportunities. Biological Psychiatry Vol. 74, 5 (2013), 333--339.Google ScholarGoogle ScholarCross RefCross Ref
  11. H. Deng, G. Runger, E. Tuv, and M. Vladimir. 2013. A time series forest for classification and feature extraction. Information Sciences Vol. 239 (2013), 142--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Hallac, S. Vare, S. P. Boyd, and J. Leskovec. 2017. Toeplitz inverse covariance-based clustering of multivariate time series data KDD. 215--223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV. 1026--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Huang, Y. Jin, Y. Gao, K.-H. Thung, and D. Shen. 2016. Longitudinal clinical score prediction in Alzheimer's disease with soft-split sparse regression based random forest. Neurobiology of Aging Vol. 46 (2016), 180--191.Google ScholarGoogle ScholarCross RefCross Ref
  15. D. Kingma and J. Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR Vol. abs/1412.6980 (2014). {arxiv}1412.6980Google ScholarGoogle Scholar
  16. J. Lin, E. Keogh, L. Wei, and S. Lonardi. 2007. Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery Vol. 15, 2 (2007), 107--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Livingston, A. Sommerlad, V. Orgeta, S. G. Costafreda, J. Huntley, D. Ames, C. Ballard, S. Banerjee, A. Burns, J. C. Mansfield, C. Cooper, N. Fox, L. N. Gitlin, R. Howard, H. C. Kales, E. B. Larson, K. Ritchie, K. Rockwood, E. L Sampson, Q. Samus, L. S Schneider, G. Selbæk, L. Teri, and N. Mukadam. 2017. Dementia prevention, intervention, and care. The Lancet Vol. 390, 10113 (2017), 2673--2734.Google ScholarGoogle ScholarCross RefCross Ref
  18. B. Logan. 2000. Mel frequency cepstral coefficients for music modeling ISMIR.Google ScholarGoogle Scholar
  19. F. Ma, R. Chitta, J. Zhou, Q. You, T. Sun, and J. Gao. 2017. Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In KDD. 1903--1911. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. J. Ordóñez and D. Roggen. 2016. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors Vol. 16, 1 (2016), 115.Google ScholarGoogle ScholarCross RefCross Ref
  21. L. Page, S. Brin, R. Motwani, and T. Winograd. 1999. The PageRank citation ranking: Bringing order to the web. Technical Report. Stanford InfoLab.Google ScholarGoogle Scholar
  22. A. M. Rush, S. Chopra, and J. Weston. 2015. A Neural Attention Model for Abstractive Sentence Summarization. CoRR Vol. abs/1509.00685 (2015). {arxiv}1509.00685Google ScholarGoogle Scholar
  23. P. Schäfer. 2015. The BOSS is concerned with time series classification in the presence of noise. Data Mining and Knowledge Discovery Vol. 29, 6 (2015), 1505--1530. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. F. Sofi, D. Valecchi, D. Bacci, R. Abbate, G. F. Gensini, A. Casini, and C. Macchi. 2011. Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. Journal of Internal Medicine Vol. 269, 1 (2011), 107--117.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. Y. Wee, P. T. Yap, and D. Shen. 2013. Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping Vol. 34, 12 (2013), 3411--3425.Google ScholarGoogle ScholarCross RefCross Ref
  26. L. Ye and E. Keogh. 2011. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Mining and Knowledge Discovery Vol. 22, 1-2 (2011), 149--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. P. Y. Yeung, L. L. Wong, C. C. Chan, J. L. Leung, and C. Y. Yung. 2014. A validation study of the Hong Kong version of Montreal Cognitive Assessment (HK-MoCA) in Chinese older adults in Hong Kong. Hong Kong Medical Journal Vol. 20, 6 (2014), 504--510.Google ScholarGoogle Scholar
  28. J. M. Zeitzer, T. Blackwell, A. R. Hoffman, S. Cummings, S. Ancoli-Israel, and K. Stone. 2018. Daily patterns of accelerometer activity predict changes in sleep, cognition, and mortality in older men. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Vol. 73, 5 (2018), 682--687.Google ScholarGoogle ScholarCross RefCross Ref
  29. J. M. Zeitzer, R. David, L. Friedman, E. Mulin, R. Garcia, J. Wang, J. A. Yesavage, P. H. Robert, and W. Shannon. 2013. Phenotyping apathy in individuals with Alzheimer Disease using functional principal component analysis. The American Journal of Geriatric Psychiatry Vol. 21, 4 (2013), 391--397.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. TATC: Predicting Alzheimer's Disease with Actigraphy Data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        KDD '18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
        July 2018
        2925 pages
        ISBN:9781450355520
        DOI:10.1145/3219819

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 July 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        KDD '18 Paper Acceptance Rate107of983submissions,11%Overall Acceptance Rate1,133of8,635submissions,13%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader