skip to main content
10.1145/3297662.3365797acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmedesConference Proceedingsconference-collections
research-article

Integrating data quality requirements to citizen science application design

Authors Info & Claims
Published:10 January 2020Publication History

ABSTRACT

Data quality is an important aspect in many fields. In citizen science application databases, data quality is often found lacking, which is why there needs to be a method of integrating data quality into the design. This paper tackles the problem by dividing data quality into separate characteristics according to the ISO / IEC 25012 standard. These characteristics are integrated into a conceptual model of the system and data model for citizen science applications. Furthermore, the paper describes a way to measure data quality using the data quality characteristics. The models and measuring methods are theoretical and can be adapted into case specific designs.

References

  1. Abdulmonem Alabri and Jane Hunter. 2010. Enhancing the Quality and Trust of Citizen Science Data. In 2010 IEEE Sixth International Conference on e-Science. IEEE, 81--88. https://doi.org/10.1109/eScience.2010.33Google ScholarGoogle Scholar
  2. Franco Arolfo and Alejandro Vaisman. 2018. Data Quality in a Big Data Context. In ACM SIGMOD Record. Vol. 31. Springer International Publishing, 159--172. https://doi.org/10.1007/978-3-319-98398-1_11Google ScholarGoogle Scholar
  3. Carlo. Batini and Monica. Scannapieca. 2006. Data quality: concepts, methodologies and techniques. Springer. 262 pages.Google ScholarGoogle Scholar
  4. Gloria Bordogna, Paola Carrara, Laura Criscuolo, Monica Pepe, and Anna Rampini. 2016. On predicting and improving the quality of Volunteer Geographic Information projects., 134--155 pages. https://doi.org/10.1080/17538947.2014.976774Google ScholarGoogle Scholar
  5. Alexander Borgida, Sol Greenspan, and John Mylopoulos. 1985. Knowledge representation as the basis for requirements specifications. Computer 18, 4 (apr 1985), 82--91. https://doi.org/10.1109/MC.1985.1662870Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Li Cai and Yangyong Zhu. 2015. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal 14, 0 (may 2015), 2. https://doi.org/10.5334/dsj-2015-002Google ScholarGoogle ScholarCross RefCross Ref
  7. Cornell Lab of Ornithology. 2019. eBird - Discover a new world of birding... https://ebird.org/homeGoogle ScholarGoogle Scholar
  8. Alycia W. Crall, Gregory J. Newman, Catherine S. Jarnevich, Thomas J. Stohlgren, Donald M. Waller, and Jim Graham. 2010. Improving and integrating data on invasive species collected by citizen scientists. Biological Invasions 12, 10 (oct 2010), 3419--3428. https://doi.org/10.1007/s10530-010-9740-9Google ScholarGoogle ScholarCross RefCross Ref
  9. DAMA UK. 2013. The Six Primary Dimensions for Data Quality Assessment - Defining Data Quality Dimensions. Technical Report. https://www.dqglobal.com/wp-content/uploads/2013/11/DAMA-UK-DQ-Dimensions-White-Paper-R37-1.pdfGoogle ScholarGoogle Scholar
  10. Diane M. Strong, Yang W. Lee, and Richard Y. Wang. 1997. Data Quality in Context. Communications of the Acm 40, 5 (1997), 103--110. https://doi.org/10.1145/253769.253804 arXiv:arXiv:1011.1669v3Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. EDM Council. 2017. Data Quality Dimensions. Technical Report. https://cdn.ymaws.com/edmcouncil.org/resource/resmgr/featured{_}documents/BP{_}DQ{_}Dimensions{_}Oct17.pdfGoogle ScholarGoogle Scholar
  12. Enterprise Solutions. 2018. Data Quality Guideline - Information Management Framework. Technical Report. https://www.enterprisesolutions.vic.gov.au/wp-content/uploads/2018/05/IM-GUIDE-09-Data-Quality-Guideline-1.pdfGoogle ScholarGoogle Scholar
  13. Laure Berti Équille, Isabelle Comyn Wattiau, Mireille Cosquer, Zoubida Kedad, Sylvaine Nugier, Verónika Peralta, Samira Si Saïd Cherfi, and Virginie Thion Goasdoué. 2015. Assessment and analysis of information quality: a multidimensional model and case studies. International Journal of Information Quality 2, 4 (2015), 300. https://doi.org/10.1504/ijiq.2011.043780Google ScholarGoogle ScholarCross RefCross Ref
  14. Roya Esmaili, Farzin Naseri, and Ali Esmaili. 2013. Quality Assessment of Volunteered Geographic Information. American Journal of Geographic Information System 2, 2 (2013), 19--26. https://doi.org/10.5923/j.ajgis.20130202.01Google ScholarGoogle Scholar
  15. Experian. 2019. What are Data Quality Dimensions? https://www.edq.com/uk/glossary/data-quality-dimensions/Google ScholarGoogle Scholar
  16. Cidália Costa Fonte, Vyron Antoniou, Lucy Bastin, Jacinto Estima, Jamal Jokar Arsanjani, Juan-Carlos Laso Bayas, Linda See, and Rumiana Vatseva. 2017. Assessing VGI Data Quality. In Mapping and the Citizen Sensor. Ubiquity Press, 137--163. https://doi.org/10.5334/bbf.gGoogle ScholarGoogle Scholar
  17. G. M. Foody, L. See, S. Fritz, M. van der Velde, C. Perger, C. Schill, D. S. Boyd, and A. Comber. 2015. Accurate Attribute Mapping from Volunteered Geographic Information: Issues of Volunteer Quantity and Quality. The Cartographic Journal 52, 4 (oct 2015), 336--344. https://doi.org/10.1080/00087041.2015.1108658Google ScholarGoogle Scholar
  18. Kristina Gruber, Jakob Huemer, Armin Zimmermann, and Ralph Maschotta. 2017. Integrated description of functional and non-functional requirements for automotive systems design using SysML. In 2017 7th IEEE International Conference on System Engineering and Technology, ICSET 2017 - Proceedings. IEEE, 27--31. https://doi.org/10.1109/ICSEngT.2017.8123415Google ScholarGoogle ScholarCross RefCross Ref
  19. iNaturalist. [n.d.]. A Community for Naturalists · iNaturalist.org. https://www.inaturalist.org/Google ScholarGoogle Scholar
  20. International Organization for Standardization. 2008. ISO/IEC 25012:2008 Software engineering -- Software product Quality Requirements and Evaluation (SQuaRE) -- Data quality model. https://www.iso.org/standard/35736.htmlGoogle ScholarGoogle Scholar
  21. Iso25000.com. 2018. ISO 25012. http://iso25000.com/index.php/en/iso-25000-standards/iso-25012https://iso25000.com/index.php/en/iso-25000-standards/iso-25012Google ScholarGoogle Scholar
  22. H. Jaakkola and B. Thalheim. 2010. Framework for high-quality software design and development: a systematic approach. IET Software 4, 2 (2010), 105. https://doi.org/10.1049/iet-sen.2008.0085Google ScholarGoogle ScholarCross RefCross Ref
  23. Feng Lin Li, Jennifer Horkoff, John Mylopoulos, Lin Liu, and Alexander Borgida. 2013. Non-functional requirements revisited. In CEUR Workshop Proceedings, Vol. 978. 109--114. http://ceur-ws.org/Vol-978/paper{_}19.pdfGoogle ScholarGoogle Scholar
  24. Roman Lukyanenko, Jeffrey Parsons, and Yolanda Wiersma. 2011. Citizen Science 2.0: Data Management Principles to Harness the Power of the Crowd. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 6629 LNCS. Springer, Berlin, Heidelberg, 465--473. https://doi.org/10.1007/978-3-642-20633-7_34Google ScholarGoogle Scholar
  25. Jiri Musto and Ajantha Dahanayake. In Press. Improving data quality, privacy and provenance in citizen science applications. In Information Modelling and Knowledge Bases XXXI, Proceedings of the 29th International Conference on Information Modelling and Knowledge Bases, EJC 2019, Lappeenranta, Finland, 3-7 June 2019 (Frontiers in Artificial Intelligence and Applications). IOS Press.Google ScholarGoogle Scholar
  26. John Mylopoulos, Lawrence Chung, and Brian Nixon. 1992. Representing and Using Nonfunctional Requirements: A Process-Oriented Approach. IEEE Transactions on Software Engineering 18, 6 (jun 1992), 483--497. https://doi.org/10.1109/32.142871Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. John Mylopoulos, Lawrence Chung, and Eric Yu. 1999. From object-oriented to goal-oriented requirements analysis. Commun. ACM 42, 1 (jan 1999), 31--37. https://doi.org/10.1145/291469.293165Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. OASIS. 2017. OASIS Open Data Protocol (OData) TC | OASIS. https://www.oasis-open.org/committees/tc{_}home.php?wg{_}abbrev=odataGoogle ScholarGoogle Scholar
  29. Dan Ortega. 2017. Seven Characteristics that Define Data Quality. https://www.blazent.com/seven-characteristics-define-quality-data/http://www.blazent.com/seven-characteristics-define-quality-data/Google ScholarGoogle Scholar
  30. Guadalupe Salazar-Zárate, Pere Botella, and Ajantha Dahanayake. 2003. Introducing non-functional requirements in UML. 116--128.Google ScholarGoogle Scholar
  31. Matthias Schröter, Roland Kraemer, Martin Mantel, Nadja Kabisch, Susanne Hecker, Anett Richter, Veronika Neumeier, and Aletta Bonn. 2017. Citizen science for assessing ecosystem services: Status, challenges and opportunities. Ecosystem Services 28 (dec 2017), 80--94. https://doi.org/10.1016/j.ecoser.2017.09.017Google ScholarGoogle Scholar
  32. Linda See, Peter Mooney, Giles Foody, Lucy Bastin, Alexis Comber, Jacinto Estima, Steffen Fritz, Norman Kerle, Bin Jiang, Mari Laakso, Hai-Ying Liu, Grega Milčinski, Matej Nikšič, Marco Painho, Andrea Pődör, Ana-Maria Olteanu-Raimond, Martin Rutzinger, Linda See, Peter Mooney, Giles Foody, Lucy Bastin, Alexis Comber, Jacinto Estima, Steffen Fritz, Norman Kerle, Bin Jiang, Mari Laakso, Hai-Ying Liu, Grega Milčinski, Matej Nikšič, Marco Painho, Andrea Pődör, Ana-Maria Olteanu-Raimond, and Martin Rutzinger. 2016. Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information. ISPRS International Journal of Geo-Information 5, 5 (apr 2016), 55. https://doi.org/10.3390/ijgi5050055Google ScholarGoogle Scholar
  33. Fatimah Sidi, Payam Hassany Shariat Panahy, Lilly Suriani Affendey, Marzanah A. Jabar, Hamidah Ibrahim, and Aida Mustapha. 2012. Data quality: A survey of data quality dimensions. In 2012 International Conference on Information Retrieval & Knowledge Management. IEEE, 300--304. https://doi.org/10.1109/InfRKM.2012.6204995Google ScholarGoogle ScholarCross RefCross Ref
  34. Stardust@home. 2019. Stardust@home -- A Citizen Science Project. http://stardustathome.ssl.berkeley.edu/Google ScholarGoogle Scholar
  35. Bernhard Thalheim. 1991. Extending the entity-relationship model for a highlevel, theory-based database design. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 504 LNCS (1991), 161--184. https://doi.org/10.1007/3-540-54141-1_10Google ScholarGoogle Scholar

Index Terms

  1. Integrating data quality requirements to citizen science application design

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      MEDES '19: Proceedings of the 11th International Conference on Management of Digital EcoSystems
      November 2019
      350 pages
      ISBN:9781450362382
      DOI:10.1145/3297662

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 January 2020

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      MEDES '19 Paper Acceptance Rate41of102submissions,40%Overall Acceptance Rate267of682submissions,39%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader